Dr. Yangning Zhang, Dr. Muhammad Imran, Dr. Pan Xia, Dr. Yiqing Chen, Ahmet Gulsaran, Yanjiang Liu, Ehsan Nikbin, Dr. Benjamin Rehl, Dr. Lizhou Fan, Dr. Filip Dinic, Dr. Da Bin Kim, Lewei Zeng, Prof. Dr. Mustafa Yavuz, Dr. Sjoerd Hoogland, Prof. Dr. Edward H. Sargent
{"title":"亲核共价配体实现了稳定短波红外探测器胶体InSb量子点的同时表面重建和钝化","authors":"Dr. Yangning Zhang, Dr. Muhammad Imran, Dr. Pan Xia, Dr. Yiqing Chen, Ahmet Gulsaran, Yanjiang Liu, Ehsan Nikbin, Dr. Benjamin Rehl, Dr. Lizhou Fan, Dr. Filip Dinic, Dr. Da Bin Kim, Lewei Zeng, Prof. Dr. Mustafa Yavuz, Dr. Sjoerd Hoogland, Prof. Dr. Edward H. Sargent","doi":"10.1002/anie.202505179","DOIUrl":null,"url":null,"abstract":"<p>Indium antimonide (InSb) colloidal quantum dots (CQDs) are promising candidates for short-wave infrared (SWIR) photodetectors due to their large Bohr exciton radius and tunable bandgap in the 0.6–1.3 eV range. However, the formation of metal oxides on InSb surfaces during synthesis impedes charge transport, necessitating CQD resurfacing strategies for integration into photodetectors. Previous reports achieved progress in device efficiency by resurfacing these CQDs with acid-halide sequential treatments, but the device operating stability remains unsatisfactory. Herein, we report a solution-phase strategy for surface reconstruction and passivation of InSb CQDs using sulfur-based nucleophilic covalent ligands. We find that short-chain thiol molecules remove surface metal oxides through nucleophilic attack and enable robust passivation of In and Sb via strong covalent bonds, whereas metal sulfides are less effective at oxide removal and passivation. Consequently, the thiolate-passivated CQDs exhibit a tenfold decrease in trap state density compared to controls and remain structurally and optically stable for 5 months. We demonstrate InSb CQD SWIR photodetectors that realize a high external quantum efficiency (EQE) of 28% at 1450 nm, with the highest operating stability among reported CQD SWIR photodetectors, retaining 95% of performance following 300 h of biased and illuminated operation.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 28","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anie.202505179","citationCount":"0","resultStr":"{\"title\":\"Nucleophilic Covalent Ligands Enable Simultaneous Surface Reconstruction and Passivation of Colloidal InSb Quantum Dots for Stable Short-Wave Infrared Photodetectors\",\"authors\":\"Dr. Yangning Zhang, Dr. Muhammad Imran, Dr. Pan Xia, Dr. Yiqing Chen, Ahmet Gulsaran, Yanjiang Liu, Ehsan Nikbin, Dr. Benjamin Rehl, Dr. Lizhou Fan, Dr. Filip Dinic, Dr. Da Bin Kim, Lewei Zeng, Prof. Dr. Mustafa Yavuz, Dr. Sjoerd Hoogland, Prof. Dr. Edward H. Sargent\",\"doi\":\"10.1002/anie.202505179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Indium antimonide (InSb) colloidal quantum dots (CQDs) are promising candidates for short-wave infrared (SWIR) photodetectors due to their large Bohr exciton radius and tunable bandgap in the 0.6–1.3 eV range. However, the formation of metal oxides on InSb surfaces during synthesis impedes charge transport, necessitating CQD resurfacing strategies for integration into photodetectors. Previous reports achieved progress in device efficiency by resurfacing these CQDs with acid-halide sequential treatments, but the device operating stability remains unsatisfactory. Herein, we report a solution-phase strategy for surface reconstruction and passivation of InSb CQDs using sulfur-based nucleophilic covalent ligands. We find that short-chain thiol molecules remove surface metal oxides through nucleophilic attack and enable robust passivation of In and Sb via strong covalent bonds, whereas metal sulfides are less effective at oxide removal and passivation. Consequently, the thiolate-passivated CQDs exhibit a tenfold decrease in trap state density compared to controls and remain structurally and optically stable for 5 months. We demonstrate InSb CQD SWIR photodetectors that realize a high external quantum efficiency (EQE) of 28% at 1450 nm, with the highest operating stability among reported CQD SWIR photodetectors, retaining 95% of performance following 300 h of biased and illuminated operation.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"64 28\",\"pages\":\"\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anie.202505179\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202505179\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202505179","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Nucleophilic Covalent Ligands Enable Simultaneous Surface Reconstruction and Passivation of Colloidal InSb Quantum Dots for Stable Short-Wave Infrared Photodetectors
Indium antimonide (InSb) colloidal quantum dots (CQDs) are promising candidates for short-wave infrared (SWIR) photodetectors due to their large Bohr exciton radius and tunable bandgap in the 0.6–1.3 eV range. However, the formation of metal oxides on InSb surfaces during synthesis impedes charge transport, necessitating CQD resurfacing strategies for integration into photodetectors. Previous reports achieved progress in device efficiency by resurfacing these CQDs with acid-halide sequential treatments, but the device operating stability remains unsatisfactory. Herein, we report a solution-phase strategy for surface reconstruction and passivation of InSb CQDs using sulfur-based nucleophilic covalent ligands. We find that short-chain thiol molecules remove surface metal oxides through nucleophilic attack and enable robust passivation of In and Sb via strong covalent bonds, whereas metal sulfides are less effective at oxide removal and passivation. Consequently, the thiolate-passivated CQDs exhibit a tenfold decrease in trap state density compared to controls and remain structurally and optically stable for 5 months. We demonstrate InSb CQD SWIR photodetectors that realize a high external quantum efficiency (EQE) of 28% at 1450 nm, with the highest operating stability among reported CQD SWIR photodetectors, retaining 95% of performance following 300 h of biased and illuminated operation.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.