用微分不等式分析简单河流质量模型的不确定性

IF 10.8 1区 数学 Q1 MATHEMATICS, APPLIED
SIAM Review Pub Date : 2025-05-08 DOI:10.1137/23m1616406
Grace D’Agostino, Hermann J. Eberl
{"title":"用微分不等式分析简单河流质量模型的不确定性","authors":"Grace D’Agostino, Hermann J. Eberl","doi":"10.1137/23m1616406","DOIUrl":null,"url":null,"abstract":"SIAM Review, Volume 67, Issue 2, Page 375-398, May 2025. <br/> Abstract.We present and discuss the Streeter–Phelps equations, which were the first river quality model. If the parameters are constants, then the model in its linear formulation can be solved explicitly. This reveals, however, that depending on parameters and initial data, the model might predict negative oxygen concentrations, which marks a breakdown of the model. To address this shortcoming, we introduce a nonlinear modification which, in the case of constant parameters, we can study in the phase plane. In real-world applications, parameters are never constant and are usually known not exactly, but instead with some uncertainty. We show how we can use the solutions for the constant parameter case to obtain estimates for the unknown solutions from estimates of the model parameters, using differential inequalities.","PeriodicalId":49525,"journal":{"name":"SIAM Review","volume":"23 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uncertainty Analysis of a Simple River Quality Model Using Differential Inequalities\",\"authors\":\"Grace D’Agostino, Hermann J. Eberl\",\"doi\":\"10.1137/23m1616406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Review, Volume 67, Issue 2, Page 375-398, May 2025. <br/> Abstract.We present and discuss the Streeter–Phelps equations, which were the first river quality model. If the parameters are constants, then the model in its linear formulation can be solved explicitly. This reveals, however, that depending on parameters and initial data, the model might predict negative oxygen concentrations, which marks a breakdown of the model. To address this shortcoming, we introduce a nonlinear modification which, in the case of constant parameters, we can study in the phase plane. In real-world applications, parameters are never constant and are usually known not exactly, but instead with some uncertainty. We show how we can use the solutions for the constant parameter case to obtain estimates for the unknown solutions from estimates of the model parameters, using differential inequalities.\",\"PeriodicalId\":49525,\"journal\":{\"name\":\"SIAM Review\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Review\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1616406\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Review","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1616406","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM评论,第67卷,第2期,375-398页,2025年5月。摘要。我们提出并讨论了斯特里特-菲尔普斯方程,这是第一个河流质量模型。如果参数为常数,则可以显式求解其线性形式的模型。然而,这表明,根据参数和初始数据,该模型可能预测负氧浓度,这标志着模型的崩溃。为了解决这个缺点,我们引入了一种非线性修正,在参数不变的情况下,我们可以在相平面上进行研究。在实际应用程序中,参数从来都不是恒定的,而且通常不是精确地知道,而是有一些不确定性。我们展示了如何使用常参数情况的解,利用微分不等式从模型参数的估计中获得未知解的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uncertainty Analysis of a Simple River Quality Model Using Differential Inequalities
SIAM Review, Volume 67, Issue 2, Page 375-398, May 2025.
Abstract.We present and discuss the Streeter–Phelps equations, which were the first river quality model. If the parameters are constants, then the model in its linear formulation can be solved explicitly. This reveals, however, that depending on parameters and initial data, the model might predict negative oxygen concentrations, which marks a breakdown of the model. To address this shortcoming, we introduce a nonlinear modification which, in the case of constant parameters, we can study in the phase plane. In real-world applications, parameters are never constant and are usually known not exactly, but instead with some uncertainty. We show how we can use the solutions for the constant parameter case to obtain estimates for the unknown solutions from estimates of the model parameters, using differential inequalities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SIAM Review
SIAM Review 数学-应用数学
CiteScore
16.90
自引率
0.00%
发文量
50
期刊介绍: Survey and Review feature papers that provide an integrative and current viewpoint on important topics in applied or computational mathematics and scientific computing. These papers aim to offer a comprehensive perspective on the subject matter. Research Spotlights publish concise research papers in applied and computational mathematics that are of interest to a wide range of readers in SIAM Review. The papers in this section present innovative ideas that are clearly explained and motivated. They stand out from regular publications in specific SIAM journals due to their accessibility and potential for widespread and long-lasting influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信