高性能的Co4S3-MnS-MoS2@CC析氢反应催化剂

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Sizhan Shu, Denglin Zhu, Xuejun Wang, Jun Sun, Jiani Wang, Qian Ling, Zile Zhou, Yujia Chen and Pingfan Wu
{"title":"高性能的Co4S3-MnS-MoS2@CC析氢反应催化剂","authors":"Sizhan Shu, Denglin Zhu, Xuejun Wang, Jun Sun, Jiani Wang, Qian Ling, Zile Zhou, Yujia Chen and Pingfan Wu","doi":"10.1039/D5TA01698C","DOIUrl":null,"url":null,"abstract":"<p >By leveraging the self-assembly properties of polyoxometalates (POMs), we synthesized a trimetallic-integrated POM compound, [Co(NH<small><sub>3</sub></small>)<small><sub>6</sub></small>]<small><sub>2</sub></small>(MnMo<small><sub>9</sub></small>O<small><sub>32</sub></small>) (Co<small><sub>2</sub></small>MnMo<small><sub>9</sub></small>), and subsequently fabricated a composite catalytic material, Co<small><sub>4</sub></small>S<small><sub>3</sub></small>-MnS-MoS<small><sub>2</sub></small>@CC, anchored on carbon cloth through a hydrothermal-calcination strategy. Experimental results demonstrate that the incorporation of trace amounts of Co<small><sub>4</sub></small>S<small><sub>3</sub></small> and MnS substantially enhances the electrocatalytic performance of the hybrid material. At a current density of 10 mA cm<small><sup>−2</sup></small>, the overpotential of the composite is reduced to 88 mV in alkaline media and 140 mV in acidic media, markedly superior to pristine MoS<small><sub>2</sub></small> (197 mV in alkaline and 237 mV in acidic conditions). Through comprehensive characterization techniques and electrochemical analyses, we elucidated the synergistic enhancement mechanism arising from multi-metallic doping. This work provides novel insights and technical benchmarks for the development of cost-effective, high-efficiency electrocatalysts.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 23","pages":" 17740-17747"},"PeriodicalIF":9.5000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-performance Co4S3-MnS-MoS2@CC catalysts for the hydrogen evolution reaction†\",\"authors\":\"Sizhan Shu, Denglin Zhu, Xuejun Wang, Jun Sun, Jiani Wang, Qian Ling, Zile Zhou, Yujia Chen and Pingfan Wu\",\"doi\":\"10.1039/D5TA01698C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >By leveraging the self-assembly properties of polyoxometalates (POMs), we synthesized a trimetallic-integrated POM compound, [Co(NH<small><sub>3</sub></small>)<small><sub>6</sub></small>]<small><sub>2</sub></small>(MnMo<small><sub>9</sub></small>O<small><sub>32</sub></small>) (Co<small><sub>2</sub></small>MnMo<small><sub>9</sub></small>), and subsequently fabricated a composite catalytic material, Co<small><sub>4</sub></small>S<small><sub>3</sub></small>-MnS-MoS<small><sub>2</sub></small>@CC, anchored on carbon cloth through a hydrothermal-calcination strategy. Experimental results demonstrate that the incorporation of trace amounts of Co<small><sub>4</sub></small>S<small><sub>3</sub></small> and MnS substantially enhances the electrocatalytic performance of the hybrid material. At a current density of 10 mA cm<small><sup>−2</sup></small>, the overpotential of the composite is reduced to 88 mV in alkaline media and 140 mV in acidic media, markedly superior to pristine MoS<small><sub>2</sub></small> (197 mV in alkaline and 237 mV in acidic conditions). Through comprehensive characterization techniques and electrochemical analyses, we elucidated the synergistic enhancement mechanism arising from multi-metallic doping. This work provides novel insights and technical benchmarks for the development of cost-effective, high-efficiency electrocatalysts.</p>\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":\" 23\",\"pages\":\" 17740-17747\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d5ta01698c\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d5ta01698c","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

利用多金属氧酸盐(POM)的自组装特性,我们合成了一种三金属集成POM化合物[Co(NH3)6]2(MnMo9O32) (Co2MnMo9),随后通过水热煅烧策略制备了一种复合催化材料Co4S3-MnS-MoS2@CC,该材料锚定在碳布上。实验结果表明,微量Co4S3和MnS的加入大大提高了杂化材料的电催化性能。当电流密度为10 mA cm-2时,复合材料的过电位在碱性介质中降至88 mV,在酸性介质中降至140 mV,明显优于原始MoS2(碱性197 mV,酸性237 mV)。通过综合表征技术和电化学分析,我们阐明了多金属掺杂产生的协同增强机理。这项工作为开发具有成本效益的高效电催化剂提供了新的见解和技术基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High-performance Co4S3-MnS-MoS2@CC catalysts for the hydrogen evolution reaction†

High-performance Co4S3-MnS-MoS2@CC catalysts for the hydrogen evolution reaction†

By leveraging the self-assembly properties of polyoxometalates (POMs), we synthesized a trimetallic-integrated POM compound, [Co(NH3)6]2(MnMo9O32) (Co2MnMo9), and subsequently fabricated a composite catalytic material, Co4S3-MnS-MoS2@CC, anchored on carbon cloth through a hydrothermal-calcination strategy. Experimental results demonstrate that the incorporation of trace amounts of Co4S3 and MnS substantially enhances the electrocatalytic performance of the hybrid material. At a current density of 10 mA cm−2, the overpotential of the composite is reduced to 88 mV in alkaline media and 140 mV in acidic media, markedly superior to pristine MoS2 (197 mV in alkaline and 237 mV in acidic conditions). Through comprehensive characterization techniques and electrochemical analyses, we elucidated the synergistic enhancement mechanism arising from multi-metallic doping. This work provides novel insights and technical benchmarks for the development of cost-effective, high-efficiency electrocatalysts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信