通过共形石墨烯覆盖层维持空位催化促进实用锂电池

IF 32.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jiaxi Gu, Zixiong Shi, Yongbiao Mu, Yuzhu Wu, Meng Tian, Ziang Chen, Kaihui Chen, Huicun Gu, Miaoyu Lu, Lin Zeng, Yuqing Song, Qiang Zhang, Jingyu Sun
{"title":"通过共形石墨烯覆盖层维持空位催化促进实用锂电池","authors":"Jiaxi Gu, Zixiong Shi, Yongbiao Mu, Yuzhu Wu, Meng Tian, Ziang Chen, Kaihui Chen, Huicun Gu, Miaoyu Lu, Lin Zeng, Yuqing Song, Qiang Zhang, Jingyu Sun","doi":"10.1039/d5ee01134e","DOIUrl":null,"url":null,"abstract":"Sluggish reaction kinetics and uncontrollable dendrite growth are deemed as the main bottlenecks for practical Li–S batteries. Notwithstanding fruitful advances in designing dual-functional mediators for both electrodes, cooperative efforts on protecting catalytic active sites and optimizing solid electrolyte interphase (SEI) with the employment of industrial catalysts are still lacking. Herein, an oxygen vacancy (V<small><sub>O</sub></small>)-sustained prototype mediator with layer-number controllable graphene modification (Al<small><sub>2</sub></small>O<small><sub>3</sub></small>@mG) is developed for concurrently accelerating redox kinetics at the S cathode and harvesting inorganic-rich SEI at the Li anode. Theoretical and experimental analysis reveals V<small><sub>O</sub></small> enhances the electrocatalytic activity while the graphene overlay serving as a catalysis sustainer enables the vacancy protection. Meanwhile, Al<small><sub>2</sub></small>O<small><sub>3</sub></small>@mG is conductive to homogenizing Li-ion flux and boosting preferential decomposition of anions, thereby stabilizing Li metal anode. Benefiting from such dual-functional reformulation, Li–S batteries with Al<small><sub>2</sub></small>O<small><sub>3</sub></small>@mG modified separators achieve a relieved capacity decay of 0.032% per cycle over 1600 cycles at 1.0 C. The assembled pouch cell delivers high areal capacity and stable cyclic operation. Such a vacancy-sustained graphene maneuver showcases promising universality to be applied on various oxide candidates, offering a meaningful guidance in mediator design toward pragmatic Li–S batteries.","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":"70 1","pages":""},"PeriodicalIF":32.4000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sustaining vacancy catalysis via conformal graphene overlays boosts practical Li–S batteries\",\"authors\":\"Jiaxi Gu, Zixiong Shi, Yongbiao Mu, Yuzhu Wu, Meng Tian, Ziang Chen, Kaihui Chen, Huicun Gu, Miaoyu Lu, Lin Zeng, Yuqing Song, Qiang Zhang, Jingyu Sun\",\"doi\":\"10.1039/d5ee01134e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sluggish reaction kinetics and uncontrollable dendrite growth are deemed as the main bottlenecks for practical Li–S batteries. Notwithstanding fruitful advances in designing dual-functional mediators for both electrodes, cooperative efforts on protecting catalytic active sites and optimizing solid electrolyte interphase (SEI) with the employment of industrial catalysts are still lacking. Herein, an oxygen vacancy (V<small><sub>O</sub></small>)-sustained prototype mediator with layer-number controllable graphene modification (Al<small><sub>2</sub></small>O<small><sub>3</sub></small>@mG) is developed for concurrently accelerating redox kinetics at the S cathode and harvesting inorganic-rich SEI at the Li anode. Theoretical and experimental analysis reveals V<small><sub>O</sub></small> enhances the electrocatalytic activity while the graphene overlay serving as a catalysis sustainer enables the vacancy protection. Meanwhile, Al<small><sub>2</sub></small>O<small><sub>3</sub></small>@mG is conductive to homogenizing Li-ion flux and boosting preferential decomposition of anions, thereby stabilizing Li metal anode. Benefiting from such dual-functional reformulation, Li–S batteries with Al<small><sub>2</sub></small>O<small><sub>3</sub></small>@mG modified separators achieve a relieved capacity decay of 0.032% per cycle over 1600 cycles at 1.0 C. The assembled pouch cell delivers high areal capacity and stable cyclic operation. Such a vacancy-sustained graphene maneuver showcases promising universality to be applied on various oxide candidates, offering a meaningful guidance in mediator design toward pragmatic Li–S batteries.\",\"PeriodicalId\":72,\"journal\":{\"name\":\"Energy & Environmental Science\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":32.4000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy & Environmental Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d5ee01134e\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5ee01134e","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

反应动力学迟缓和枝晶生长不可控是制约锂硫电池实际应用的主要瓶颈。尽管在设计用于两个电极的双功能介质方面取得了丰硕的进展,但在保护催化活性位点和优化固体电解质界面(SEI)与工业催化剂的使用方面的合作努力仍然缺乏。本文开发了一种具有层数可控石墨烯修饰的氧空位(VO)持续原型介质(Al2O3@mG),可以同时加速S阴极的氧化还原动力学,并在Li阳极收集富含无机的SEI。理论和实验分析表明,VO增强了电催化活性,而石墨烯覆盖层作为催化支撑层具有空位保护作用。同时Al2O3@mG有助于均匀锂离子通量,促进阴离子的优先分解,从而稳定锂金属阳极。受益于这种双重功能的重新配方,使用Al2O3@mG改良隔膜的Li-S电池在1.0℃下,在1600次循环中,每循环减少0.032%的容量衰减。组装的袋状电池具有高面积容量和稳定的循环运行。这种维持空位的石墨烯操作展示了应用于各种氧化物候选物的有希望的普遍性,为实用的Li-S电池的介质设计提供了有意义的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sustaining vacancy catalysis via conformal graphene overlays boosts practical Li–S batteries
Sluggish reaction kinetics and uncontrollable dendrite growth are deemed as the main bottlenecks for practical Li–S batteries. Notwithstanding fruitful advances in designing dual-functional mediators for both electrodes, cooperative efforts on protecting catalytic active sites and optimizing solid electrolyte interphase (SEI) with the employment of industrial catalysts are still lacking. Herein, an oxygen vacancy (VO)-sustained prototype mediator with layer-number controllable graphene modification (Al2O3@mG) is developed for concurrently accelerating redox kinetics at the S cathode and harvesting inorganic-rich SEI at the Li anode. Theoretical and experimental analysis reveals VO enhances the electrocatalytic activity while the graphene overlay serving as a catalysis sustainer enables the vacancy protection. Meanwhile, Al2O3@mG is conductive to homogenizing Li-ion flux and boosting preferential decomposition of anions, thereby stabilizing Li metal anode. Benefiting from such dual-functional reformulation, Li–S batteries with Al2O3@mG modified separators achieve a relieved capacity decay of 0.032% per cycle over 1600 cycles at 1.0 C. The assembled pouch cell delivers high areal capacity and stable cyclic operation. Such a vacancy-sustained graphene maneuver showcases promising universality to be applied on various oxide candidates, offering a meaningful guidance in mediator design toward pragmatic Li–S batteries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy & Environmental Science
Energy & Environmental Science 化学-工程:化工
CiteScore
50.50
自引率
2.20%
发文量
349
审稿时长
2.2 months
期刊介绍: Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences." Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信