Hoi Ying Chung, Roong Jien Wong, Hao Wu, Denny Gunawan, Rose Amal, Yun Hau Ng
{"title":"用于太阳能燃料生产的可扩展和集成光催化反应器系统:光氧化还原和光重整过程","authors":"Hoi Ying Chung, Roong Jien Wong, Hao Wu, Denny Gunawan, Rose Amal, Yun Hau Ng","doi":"10.1002/aenm.202404956","DOIUrl":null,"url":null,"abstract":"Excessive human activities have led to a series of environmental and energy issues, such as global warming and energy shortages. These issues have drawn the attention of society to seek alternatives to remediate environmental pollution and achieve a low-carbon society. Photocatalytic (PC), photoelectrochemical (PEC), and photoreforming (PR) processes are considered promising technologies that offer the opportunity to recycle plastic waste, water, and carbon dioxide (CO<sub>2</sub>), transforming them into clean hydrogen (H<sub>2</sub>), carbon-neutral methane (CH<sub>4</sub>), green methanol (CH<sub>3</sub>OH) and other fuels by using light-responsive semiconductors. In recent decades, intensive research has been devoted to exploring photoactive catalysts with ideal optoelectronic and electronic band structures that can effectively catalyze such reactions by improving light absorption, promoting charge transfer and suppressing charge carrier recombination for catalytic enhancement in PCs, PECs, and PRs. However, limited attention has been focused on the advanced design of photocatalytic reaction systems or reactors, which is critically vital for upscaling the overall solar energy conversion performance to an industrial scale. This review summarizes the recent advancements in structural engineering strategies and challenges in designing efficient large-scale light-driven catalytic systems. In detail, the operational parameters, including the nature of the reactant, light capture ability, photoreactor geometry, operating mode, and phases, that affect the solar-to-fuel conversion performance are discussed. The safety concerns and standardization of the photocatalytic reaction for industrial-scale applications are also discussed. Finally, perspectives on the challenges and outlook in constructing commercialized PC, PEC, and PR photoreactor prototypes are provided that can become industrially viable technologies.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"68 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scalable and Integrated Photocatalytic Reactor Systems for Solar-to-Fuel Production: Photoredox and Photoreforming Processes\",\"authors\":\"Hoi Ying Chung, Roong Jien Wong, Hao Wu, Denny Gunawan, Rose Amal, Yun Hau Ng\",\"doi\":\"10.1002/aenm.202404956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Excessive human activities have led to a series of environmental and energy issues, such as global warming and energy shortages. These issues have drawn the attention of society to seek alternatives to remediate environmental pollution and achieve a low-carbon society. Photocatalytic (PC), photoelectrochemical (PEC), and photoreforming (PR) processes are considered promising technologies that offer the opportunity to recycle plastic waste, water, and carbon dioxide (CO<sub>2</sub>), transforming them into clean hydrogen (H<sub>2</sub>), carbon-neutral methane (CH<sub>4</sub>), green methanol (CH<sub>3</sub>OH) and other fuels by using light-responsive semiconductors. In recent decades, intensive research has been devoted to exploring photoactive catalysts with ideal optoelectronic and electronic band structures that can effectively catalyze such reactions by improving light absorption, promoting charge transfer and suppressing charge carrier recombination for catalytic enhancement in PCs, PECs, and PRs. However, limited attention has been focused on the advanced design of photocatalytic reaction systems or reactors, which is critically vital for upscaling the overall solar energy conversion performance to an industrial scale. This review summarizes the recent advancements in structural engineering strategies and challenges in designing efficient large-scale light-driven catalytic systems. In detail, the operational parameters, including the nature of the reactant, light capture ability, photoreactor geometry, operating mode, and phases, that affect the solar-to-fuel conversion performance are discussed. The safety concerns and standardization of the photocatalytic reaction for industrial-scale applications are also discussed. Finally, perspectives on the challenges and outlook in constructing commercialized PC, PEC, and PR photoreactor prototypes are provided that can become industrially viable technologies.\",\"PeriodicalId\":111,\"journal\":{\"name\":\"Advanced Energy Materials\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":24.4000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/aenm.202404956\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202404956","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Scalable and Integrated Photocatalytic Reactor Systems for Solar-to-Fuel Production: Photoredox and Photoreforming Processes
Excessive human activities have led to a series of environmental and energy issues, such as global warming and energy shortages. These issues have drawn the attention of society to seek alternatives to remediate environmental pollution and achieve a low-carbon society. Photocatalytic (PC), photoelectrochemical (PEC), and photoreforming (PR) processes are considered promising technologies that offer the opportunity to recycle plastic waste, water, and carbon dioxide (CO2), transforming them into clean hydrogen (H2), carbon-neutral methane (CH4), green methanol (CH3OH) and other fuels by using light-responsive semiconductors. In recent decades, intensive research has been devoted to exploring photoactive catalysts with ideal optoelectronic and electronic band structures that can effectively catalyze such reactions by improving light absorption, promoting charge transfer and suppressing charge carrier recombination for catalytic enhancement in PCs, PECs, and PRs. However, limited attention has been focused on the advanced design of photocatalytic reaction systems or reactors, which is critically vital for upscaling the overall solar energy conversion performance to an industrial scale. This review summarizes the recent advancements in structural engineering strategies and challenges in designing efficient large-scale light-driven catalytic systems. In detail, the operational parameters, including the nature of the reactant, light capture ability, photoreactor geometry, operating mode, and phases, that affect the solar-to-fuel conversion performance are discussed. The safety concerns and standardization of the photocatalytic reaction for industrial-scale applications are also discussed. Finally, perspectives on the challenges and outlook in constructing commercialized PC, PEC, and PR photoreactor prototypes are provided that can become industrially viable technologies.
期刊介绍:
Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small.
With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics.
The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.