Robert Frömel, Julia Rühle, Aina Bernal Martinez, Chelsea Szu-Tu, Felix Pacheco Pastor, Rosa Martinez-Corral, Lars Velten
{"title":"造血中细胞状态特异性增强剂的设计原则","authors":"Robert Frömel, Julia Rühle, Aina Bernal Martinez, Chelsea Szu-Tu, Felix Pacheco Pastor, Rosa Martinez-Corral, Lars Velten","doi":"10.1016/j.cell.2025.04.017","DOIUrl":null,"url":null,"abstract":"During cellular differentiation, enhancers transform overlapping gradients of transcription factors (TFs) to highly specific gene expression patterns. However, the vast complexity of regulatory DNA impedes the identification of the underlying <em>cis</em>-regulatory rules. Here, we characterized 64,400 fully synthetic DNA sequences to bottom-up dissect design principles of cell-state-specific enhancers in the context of the differentiation of blood stem cells to seven myeloid lineages. Focusing on binding sites for 38 TFs and their pairwise interactions, we found that identical sites displayed both repressive and activating function as a consequence of cell state, site combinatorics, or simply predicted occupancy of a TF on an enhancer. Surprisingly, combinations of activating sites frequently neutralized one another or gained repressive function. These negative synergies convert quantitative imbalances in TF expression into binary activity patterns. We exploit this principle to automatically create enhancers with specificity to user-defined combinations of hematopoietic progenitor cell states from scratch.","PeriodicalId":9656,"journal":{"name":"Cell","volume":"13 1","pages":""},"PeriodicalIF":45.5000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design principles of cell-state-specific enhancers in hematopoiesis\",\"authors\":\"Robert Frömel, Julia Rühle, Aina Bernal Martinez, Chelsea Szu-Tu, Felix Pacheco Pastor, Rosa Martinez-Corral, Lars Velten\",\"doi\":\"10.1016/j.cell.2025.04.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During cellular differentiation, enhancers transform overlapping gradients of transcription factors (TFs) to highly specific gene expression patterns. However, the vast complexity of regulatory DNA impedes the identification of the underlying <em>cis</em>-regulatory rules. Here, we characterized 64,400 fully synthetic DNA sequences to bottom-up dissect design principles of cell-state-specific enhancers in the context of the differentiation of blood stem cells to seven myeloid lineages. Focusing on binding sites for 38 TFs and their pairwise interactions, we found that identical sites displayed both repressive and activating function as a consequence of cell state, site combinatorics, or simply predicted occupancy of a TF on an enhancer. Surprisingly, combinations of activating sites frequently neutralized one another or gained repressive function. These negative synergies convert quantitative imbalances in TF expression into binary activity patterns. We exploit this principle to automatically create enhancers with specificity to user-defined combinations of hematopoietic progenitor cell states from scratch.\",\"PeriodicalId\":9656,\"journal\":{\"name\":\"Cell\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":45.5000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cell.2025.04.017\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cell.2025.04.017","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Design principles of cell-state-specific enhancers in hematopoiesis
During cellular differentiation, enhancers transform overlapping gradients of transcription factors (TFs) to highly specific gene expression patterns. However, the vast complexity of regulatory DNA impedes the identification of the underlying cis-regulatory rules. Here, we characterized 64,400 fully synthetic DNA sequences to bottom-up dissect design principles of cell-state-specific enhancers in the context of the differentiation of blood stem cells to seven myeloid lineages. Focusing on binding sites for 38 TFs and their pairwise interactions, we found that identical sites displayed both repressive and activating function as a consequence of cell state, site combinatorics, or simply predicted occupancy of a TF on an enhancer. Surprisingly, combinations of activating sites frequently neutralized one another or gained repressive function. These negative synergies convert quantitative imbalances in TF expression into binary activity patterns. We exploit this principle to automatically create enhancers with specificity to user-defined combinations of hematopoietic progenitor cell states from scratch.
期刊介绍:
Cells is an international, peer-reviewed, open access journal that focuses on cell biology, molecular biology, and biophysics. It is affiliated with several societies, including the Spanish Society for Biochemistry and Molecular Biology (SEBBM), Nordic Autophagy Society (NAS), Spanish Society of Hematology and Hemotherapy (SEHH), and Society for Regenerative Medicine (Russian Federation) (RPO).
The journal publishes research findings of significant importance in various areas of experimental biology, such as cell biology, molecular biology, neuroscience, immunology, virology, microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. The primary criterion for considering papers is whether the results contribute to significant conceptual advances or raise thought-provoking questions and hypotheses related to interesting and important biological inquiries.
In addition to primary research articles presented in four formats, Cells also features review and opinion articles in its "leading edge" section, discussing recent research advancements and topics of interest to its wide readership.