Assaf Ramot, Felix H. Taschbach, Yun C. Yang, Yuxin Hu, Qiyu Chen, Bobbie C. Morales, Xinyi C. Wang, An Wu, Kay M. Tye, Marcus K. Benna, Takaki Komiyama
{"title":"运动学习细化了丘脑对运动皮层的影响","authors":"Assaf Ramot, Felix H. Taschbach, Yun C. Yang, Yuxin Hu, Qiyu Chen, Bobbie C. Morales, Xinyi C. Wang, An Wu, Kay M. Tye, Marcus K. Benna, Takaki Komiyama","doi":"10.1038/s41586-025-08962-8","DOIUrl":null,"url":null,"abstract":"The primary motor cortex (M1) is central for the learning and execution of dexterous motor skills1–3, and its superficial layer (layers 2 and 3; hereafter, L2/3) is a key locus of learning-related plasticity1,4–6. It remains unknown how motor learning shapes the way in which upstream regions activate M1 circuits to execute learned movements. Here, using longitudinal axonal imaging of the main inputs to M1 L2/3 in mice, we show that the motor thalamus is the key input source that encodes learned movements in experts (animals trained for two weeks). We then use optogenetics to identify the subset of M1 L2/3 neurons that are strongly driven by thalamic inputs before and after learning. We find that the thalamic influence on M1 changes with learning, such that the motor thalamus preferentially activates the M1 neurons that encode learned movements in experts. Inactivation of the thalamic inputs to M1 in experts impairs learned movements. Our study shows that motor learning reshapes the thalamic influence on M1 to enable the reliable execution of learned movements. Imaging and optogenetics in mice provide insight into the interplay between the primary motor cortex and the motor thalamus during learning, showing that thalamic inputs have a key role in the execution of learned movements.","PeriodicalId":18787,"journal":{"name":"Nature","volume":"643 8072","pages":"725-734"},"PeriodicalIF":48.5000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Motor learning refines thalamic influence on motor cortex\",\"authors\":\"Assaf Ramot, Felix H. Taschbach, Yun C. Yang, Yuxin Hu, Qiyu Chen, Bobbie C. Morales, Xinyi C. Wang, An Wu, Kay M. Tye, Marcus K. Benna, Takaki Komiyama\",\"doi\":\"10.1038/s41586-025-08962-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The primary motor cortex (M1) is central for the learning and execution of dexterous motor skills1–3, and its superficial layer (layers 2 and 3; hereafter, L2/3) is a key locus of learning-related plasticity1,4–6. It remains unknown how motor learning shapes the way in which upstream regions activate M1 circuits to execute learned movements. Here, using longitudinal axonal imaging of the main inputs to M1 L2/3 in mice, we show that the motor thalamus is the key input source that encodes learned movements in experts (animals trained for two weeks). We then use optogenetics to identify the subset of M1 L2/3 neurons that are strongly driven by thalamic inputs before and after learning. We find that the thalamic influence on M1 changes with learning, such that the motor thalamus preferentially activates the M1 neurons that encode learned movements in experts. Inactivation of the thalamic inputs to M1 in experts impairs learned movements. Our study shows that motor learning reshapes the thalamic influence on M1 to enable the reliable execution of learned movements. Imaging and optogenetics in mice provide insight into the interplay between the primary motor cortex and the motor thalamus during learning, showing that thalamic inputs have a key role in the execution of learned movements.\",\"PeriodicalId\":18787,\"journal\":{\"name\":\"Nature\",\"volume\":\"643 8072\",\"pages\":\"725-734\"},\"PeriodicalIF\":48.5000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.nature.com/articles/s41586-025-08962-8\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://www.nature.com/articles/s41586-025-08962-8","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Motor learning refines thalamic influence on motor cortex
The primary motor cortex (M1) is central for the learning and execution of dexterous motor skills1–3, and its superficial layer (layers 2 and 3; hereafter, L2/3) is a key locus of learning-related plasticity1,4–6. It remains unknown how motor learning shapes the way in which upstream regions activate M1 circuits to execute learned movements. Here, using longitudinal axonal imaging of the main inputs to M1 L2/3 in mice, we show that the motor thalamus is the key input source that encodes learned movements in experts (animals trained for two weeks). We then use optogenetics to identify the subset of M1 L2/3 neurons that are strongly driven by thalamic inputs before and after learning. We find that the thalamic influence on M1 changes with learning, such that the motor thalamus preferentially activates the M1 neurons that encode learned movements in experts. Inactivation of the thalamic inputs to M1 in experts impairs learned movements. Our study shows that motor learning reshapes the thalamic influence on M1 to enable the reliable execution of learned movements. Imaging and optogenetics in mice provide insight into the interplay between the primary motor cortex and the motor thalamus during learning, showing that thalamic inputs have a key role in the execution of learned movements.
期刊介绍:
Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.