E3Docker:用于潜在E3绑定发现的对接服务器

IF 13.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Kejia Yan, Wangqiu He, Mingwei Pang, Xufeng Lu, Zhou Chen, Lianhua Piao, Han Zhang, Yu Wang, Shan Chang, Ren Kong
{"title":"E3Docker:用于潜在E3绑定发现的对接服务器","authors":"Kejia Yan, Wangqiu He, Mingwei Pang, Xufeng Lu, Zhou Chen, Lianhua Piao, Han Zhang, Yu Wang, Shan Chang, Ren Kong","doi":"10.1093/nar/gkaf391","DOIUrl":null,"url":null,"abstract":"Targeted protein degradation (TPD) has emerged as a promising therapeutic strategy for modulating protein levels in cells. Proteolysis-targeting chimeras and molecular glues facilitate the formation of a complex between the protein of interest (POI) and a specific E3 ligase, leading to POI ubiquitination and subsequent degradation by the proteasome. Considering over 600 E3s in the human genome, it is of great potential to find novel E3 binders and recruit new E3 ligase for TPD related drug discovery. Here we introduce E3Docker, an online computational tool for E3 binder discovery. A total of 1075 Homo sapiens E3 ligases are collected from databases and literature, and 4474 three-dimensional structures of these E3 ligases, in either apo or complex forms, are integrated into the web server. The druggable pockets for each E3 ligase are defined by experimentally bound ligand from PDB or predicted by using DeepPocket. CoDock-Ligand is employed as docking engine for potential E3 binder estimation. With a user-friendly interface, E3Docker facilitates the generation of binding poses and affinity scores for compounds with over 1000 kinds of E3 ligases and may benefit for novel E3 binder discovery. The E3Docker server and tutorials are freely available at https://e3docker.schanglab.org.cn/.","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"18 1","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"E3Docker: a docking server for potential E3 binder discovery\",\"authors\":\"Kejia Yan, Wangqiu He, Mingwei Pang, Xufeng Lu, Zhou Chen, Lianhua Piao, Han Zhang, Yu Wang, Shan Chang, Ren Kong\",\"doi\":\"10.1093/nar/gkaf391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Targeted protein degradation (TPD) has emerged as a promising therapeutic strategy for modulating protein levels in cells. Proteolysis-targeting chimeras and molecular glues facilitate the formation of a complex between the protein of interest (POI) and a specific E3 ligase, leading to POI ubiquitination and subsequent degradation by the proteasome. Considering over 600 E3s in the human genome, it is of great potential to find novel E3 binders and recruit new E3 ligase for TPD related drug discovery. Here we introduce E3Docker, an online computational tool for E3 binder discovery. A total of 1075 Homo sapiens E3 ligases are collected from databases and literature, and 4474 three-dimensional structures of these E3 ligases, in either apo or complex forms, are integrated into the web server. The druggable pockets for each E3 ligase are defined by experimentally bound ligand from PDB or predicted by using DeepPocket. CoDock-Ligand is employed as docking engine for potential E3 binder estimation. With a user-friendly interface, E3Docker facilitates the generation of binding poses and affinity scores for compounds with over 1000 kinds of E3 ligases and may benefit for novel E3 binder discovery. The E3Docker server and tutorials are freely available at https://e3docker.schanglab.org.cn/.\",\"PeriodicalId\":19471,\"journal\":{\"name\":\"Nucleic Acids Research\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":13.1000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nucleic Acids Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/nar/gkaf391\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkaf391","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

靶向蛋白降解(TPD)已成为一种有前途的治疗策略来调节细胞中的蛋白质水平。靶向蛋白水解的嵌合体和分子胶促进了目标蛋白(POI)和特定E3连接酶之间复合物的形成,导致POI泛素化并随后被蛋白酶体降解。考虑到人类基因组中有600多个E3,寻找新的E3结合物和招募新的E3连接酶对TPD相关药物的发现具有很大的潜力。这里我们介绍E3Docker,一个用于E3活页夹发现的在线计算工具。从数据库和文献中共收集到1075个智人E3连接酶,并将4474个载子或复杂形式的E3连接酶的三维结构整合到web服务器中。每个E3连接酶的可药物口袋由PDB的实验结合配体定义或使用DeepPocket预测。采用CoDock-Ligand作为对接引擎进行潜在E3结合剂估计。E3Docker具有用户友好的界面,可以方便地生成含有1000多种E3连接酶的化合物的结合姿态和亲和力评分,并可能有助于发现新的E3结合剂。E3Docker服务器和教程可以在https://e3docker.schanglab.org.cn/上免费获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
E3Docker: a docking server for potential E3 binder discovery
Targeted protein degradation (TPD) has emerged as a promising therapeutic strategy for modulating protein levels in cells. Proteolysis-targeting chimeras and molecular glues facilitate the formation of a complex between the protein of interest (POI) and a specific E3 ligase, leading to POI ubiquitination and subsequent degradation by the proteasome. Considering over 600 E3s in the human genome, it is of great potential to find novel E3 binders and recruit new E3 ligase for TPD related drug discovery. Here we introduce E3Docker, an online computational tool for E3 binder discovery. A total of 1075 Homo sapiens E3 ligases are collected from databases and literature, and 4474 three-dimensional structures of these E3 ligases, in either apo or complex forms, are integrated into the web server. The druggable pockets for each E3 ligase are defined by experimentally bound ligand from PDB or predicted by using DeepPocket. CoDock-Ligand is employed as docking engine for potential E3 binder estimation. With a user-friendly interface, E3Docker facilitates the generation of binding poses and affinity scores for compounds with over 1000 kinds of E3 ligases and may benefit for novel E3 binder discovery. The E3Docker server and tutorials are freely available at https://e3docker.schanglab.org.cn/.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nucleic Acids Research
Nucleic Acids Research 生物-生化与分子生物学
CiteScore
27.10
自引率
4.70%
发文量
1057
审稿时长
2 months
期刊介绍: Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信