Peipei Wang, Fanrui Meng, Christina B Del Azodi, Kenia Segura Abá, Michael D Casler, Shin-Han Shiu
{"title":"通过对柳枝稷多因子的研究优化复杂性状的基因组预测","authors":"Peipei Wang, Fanrui Meng, Christina B Del Azodi, Kenia Segura Abá, Michael D Casler, Shin-Han Shiu","doi":"10.1093/plphys/kiaf188","DOIUrl":null,"url":null,"abstract":"Genomic prediction has accelerated breeding processes and provided mechanistic insights into the genetic bases of complex traits. To further optimize genomic prediction, we assess the impact of genome assemblies, genotyping approaches, variant types, allelic complexities, polyploidy levels, and population structures on the prediction of 20 complex traits in switchgrass (Panicum virgatum L.), a perennial biofuel feedstock. Surprisingly, short read-based genome assembly performs comparably to or even better than long read-based assembly. Due to higher gene coverage, exome capture and multi-allelic variants outperform genotyping-by-sequencing and bi-allelic variants, respectively. Tetraploid models show higher prediction accuracy than octoploid models for most traits, likely due to the greater genetic distances among tetraploids. Depending on the trait in question, different types of variants need to be integrated for optimal predictions. Our study provides insights into the factors influencing genomic prediction outcomes, guiding best practices for future studies and for improving agronomic traits in switchgrass and other species through selective breeding.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"63 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing genomic prediction for complex traits via investigating multiple factors in switchgrass\",\"authors\":\"Peipei Wang, Fanrui Meng, Christina B Del Azodi, Kenia Segura Abá, Michael D Casler, Shin-Han Shiu\",\"doi\":\"10.1093/plphys/kiaf188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Genomic prediction has accelerated breeding processes and provided mechanistic insights into the genetic bases of complex traits. To further optimize genomic prediction, we assess the impact of genome assemblies, genotyping approaches, variant types, allelic complexities, polyploidy levels, and population structures on the prediction of 20 complex traits in switchgrass (Panicum virgatum L.), a perennial biofuel feedstock. Surprisingly, short read-based genome assembly performs comparably to or even better than long read-based assembly. Due to higher gene coverage, exome capture and multi-allelic variants outperform genotyping-by-sequencing and bi-allelic variants, respectively. Tetraploid models show higher prediction accuracy than octoploid models for most traits, likely due to the greater genetic distances among tetraploids. Depending on the trait in question, different types of variants need to be integrated for optimal predictions. Our study provides insights into the factors influencing genomic prediction outcomes, guiding best practices for future studies and for improving agronomic traits in switchgrass and other species through selective breeding.\",\"PeriodicalId\":20101,\"journal\":{\"name\":\"Plant Physiology\",\"volume\":\"63 1\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/plphys/kiaf188\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiaf188","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Optimizing genomic prediction for complex traits via investigating multiple factors in switchgrass
Genomic prediction has accelerated breeding processes and provided mechanistic insights into the genetic bases of complex traits. To further optimize genomic prediction, we assess the impact of genome assemblies, genotyping approaches, variant types, allelic complexities, polyploidy levels, and population structures on the prediction of 20 complex traits in switchgrass (Panicum virgatum L.), a perennial biofuel feedstock. Surprisingly, short read-based genome assembly performs comparably to or even better than long read-based assembly. Due to higher gene coverage, exome capture and multi-allelic variants outperform genotyping-by-sequencing and bi-allelic variants, respectively. Tetraploid models show higher prediction accuracy than octoploid models for most traits, likely due to the greater genetic distances among tetraploids. Depending on the trait in question, different types of variants need to be integrated for optimal predictions. Our study provides insights into the factors influencing genomic prediction outcomes, guiding best practices for future studies and for improving agronomic traits in switchgrass and other species through selective breeding.
期刊介绍:
Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research.
As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.