{"title":"可穿戴应变传感器用高可拉伸、自粘离子导电水凝胶的设计","authors":"Huawei Gao, Yupan Han, Mengjie Huang, Jianwei Li, Hongling Sun, Guojie Li, Lin Dong, Xianhu Liu, Chuntai Liu, Changyu Shen","doi":"10.1002/adsr.202500005","DOIUrl":null,"url":null,"abstract":"<p>Conductive hydrogels (CHs) have received numerous attentions for potential applications in flexible electronics. However, the construction of high-performance CHs with high stretchability, favorable electrical conductivity, and reversible adhesiveness simultaneously still remains a great challenge. Herein, an ionic CH with the above characteristics is proposed via introducing phytic acid (PA) into semi-interpenetrating cross-linked network of poly(acrylamide-co-N-(hydroxymethyl) acrylamide) and chitosan hydrogels. The synergy of hydrogen bonds and electrostatic interactions endows the obtained hydrogel with high stretchability (1131%), toughness (88.32 kJ·m<sup>−3</sup>), and satisfactory adhesiveness (25.78 kPa to wood). The presence of PA enables the composite hydrogel to exhibit favorable electrical conductivity. Impressively, the resultant hydrogel can be assembled into the wearable strain sensor to present high sensitivity of 1.32 in the wide strain response range (0–1131%), rapid response time (340 ms), and excellent cyclic stability. More importantly, the prepared stain sensor can precisely recognize complicated human movements and physiological activities and realize the information encryption, making this hydrogel a promising candidate for preparing high-performance electronics.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":"4 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202500005","citationCount":"0","resultStr":"{\"title\":\"Design of Highly Stretchable, Self-Adhesive Ionic Conductive Hydrogels for Wearable Strain Sensors\",\"authors\":\"Huawei Gao, Yupan Han, Mengjie Huang, Jianwei Li, Hongling Sun, Guojie Li, Lin Dong, Xianhu Liu, Chuntai Liu, Changyu Shen\",\"doi\":\"10.1002/adsr.202500005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Conductive hydrogels (CHs) have received numerous attentions for potential applications in flexible electronics. However, the construction of high-performance CHs with high stretchability, favorable electrical conductivity, and reversible adhesiveness simultaneously still remains a great challenge. Herein, an ionic CH with the above characteristics is proposed via introducing phytic acid (PA) into semi-interpenetrating cross-linked network of poly(acrylamide-co-N-(hydroxymethyl) acrylamide) and chitosan hydrogels. The synergy of hydrogen bonds and electrostatic interactions endows the obtained hydrogel with high stretchability (1131%), toughness (88.32 kJ·m<sup>−3</sup>), and satisfactory adhesiveness (25.78 kPa to wood). The presence of PA enables the composite hydrogel to exhibit favorable electrical conductivity. Impressively, the resultant hydrogel can be assembled into the wearable strain sensor to present high sensitivity of 1.32 in the wide strain response range (0–1131%), rapid response time (340 ms), and excellent cyclic stability. More importantly, the prepared stain sensor can precisely recognize complicated human movements and physiological activities and realize the information encryption, making this hydrogel a promising candidate for preparing high-performance electronics.</p>\",\"PeriodicalId\":100037,\"journal\":{\"name\":\"Advanced Sensor Research\",\"volume\":\"4 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202500005\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Sensor Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adsr.202500005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sensor Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adsr.202500005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
导电水凝胶(CHs)在柔性电子领域的潜在应用受到了广泛的关注。然而,同时构建具有高拉伸性、良好导电性和可逆粘附性的高性能CHs仍然是一个巨大的挑战。本文通过将植酸(PA)引入到聚(丙烯酰胺-co- n -(羟甲基)丙烯酰胺)和壳聚糖水凝胶半互穿交联网络中,提出了具有上述特性的离子CH。氢键和静电相互作用的协同作用使所制得的水凝胶具有高拉伸性(1131%)、韧性(88.32 kJ·m−3)和良好的粘接性(对木材的粘接力为25.78 kPa)。PA的存在使复合水凝胶表现出良好的导电性。令人印象深刻的是,合成的水凝胶可以组装到可穿戴式应变传感器中,在宽应变响应范围(0-1131%)内具有1.32的高灵敏度,快速响应时间(340 ms)和出色的循环稳定性。更重要的是,制备的染色传感器可以精确识别复杂的人体运动和生理活动,并实现信息加密,使该水凝胶成为制备高性能电子产品的有希望的候选物。
Design of Highly Stretchable, Self-Adhesive Ionic Conductive Hydrogels for Wearable Strain Sensors
Conductive hydrogels (CHs) have received numerous attentions for potential applications in flexible electronics. However, the construction of high-performance CHs with high stretchability, favorable electrical conductivity, and reversible adhesiveness simultaneously still remains a great challenge. Herein, an ionic CH with the above characteristics is proposed via introducing phytic acid (PA) into semi-interpenetrating cross-linked network of poly(acrylamide-co-N-(hydroxymethyl) acrylamide) and chitosan hydrogels. The synergy of hydrogen bonds and electrostatic interactions endows the obtained hydrogel with high stretchability (1131%), toughness (88.32 kJ·m−3), and satisfactory adhesiveness (25.78 kPa to wood). The presence of PA enables the composite hydrogel to exhibit favorable electrical conductivity. Impressively, the resultant hydrogel can be assembled into the wearable strain sensor to present high sensitivity of 1.32 in the wide strain response range (0–1131%), rapid response time (340 ms), and excellent cyclic stability. More importantly, the prepared stain sensor can precisely recognize complicated human movements and physiological activities and realize the information encryption, making this hydrogel a promising candidate for preparing high-performance electronics.