明胶-角蛋白-壳聚糖功能化纳米银生物纳米复合膜的抗微生物和抗紫外线性能研究

IF 3.2 4区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Biopolymers Pub Date : 2025-05-07 DOI:10.1002/bip.70023
S. P. Naseem Banu, Kannapiran Rajendrakumar
{"title":"明胶-角蛋白-壳聚糖功能化纳米银生物纳米复合膜的抗微生物和抗紫外线性能研究","authors":"S. P. Naseem Banu,&nbsp;Kannapiran Rajendrakumar","doi":"10.1002/bip.70023","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This study investigates the properties of a biocomposite film made from gelatin and sustainably sourced keratin incorporating chitosan-functionalized silver nanoparticles. Varied concentrations of chitosan solution (i.e., 0.4%, 0.6%, 0.8%, and 1% w/v) were used in the synthesis of silver nanoparticles, and their particle size, distribution, and antibacterial and antifungal activities were evaluated against foodborne pathogens (<i>Escherichia coli</i>, <i>Staphylococcus aureus</i>, <i>Rhizopus stolonifer</i>, and <i>Aspergillus niger</i>). The addition of keratin enhanced the film's tensile strength to 16.64 MPa, a 403% increase compared to the gelatin film. However, incorporating 2% chitosan functionalized silver nanoparticles reduced the tensile strength to 9.07 MPa compared to the Gelatin-Keratin film. The distribution of nanoparticles and the interaction between the polymer chains were analyzed using scanning electron microscopy and Fourier transform infrared spectroscopy. The composite films also exhibited significant UV blocking efficiency, achieving 99% blockage of ultraviolet A and 100% blockage of ultraviolet B. The biocompatibility of the films was tested with MG63 cell lines, showing that silver nanoparticle concentrations (0.3%–2%) improved cell viability to 87% after 96 h of incubation. These findings reveal that the bionanocomposite films exhibit strong antibacterial and antifungal properties, along with excellent biocompatibility, making them ideal materials for wound healing and tissue engineering applications.</p>\n </div>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":"116 3","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Studies on Gelatin-Keratin-Chitosan Functionalized Silver Nanoparticles Based Bionanocomposite Films With Improved Antimicrobial and UV-Blocking Properties\",\"authors\":\"S. P. Naseem Banu,&nbsp;Kannapiran Rajendrakumar\",\"doi\":\"10.1002/bip.70023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>This study investigates the properties of a biocomposite film made from gelatin and sustainably sourced keratin incorporating chitosan-functionalized silver nanoparticles. Varied concentrations of chitosan solution (i.e., 0.4%, 0.6%, 0.8%, and 1% w/v) were used in the synthesis of silver nanoparticles, and their particle size, distribution, and antibacterial and antifungal activities were evaluated against foodborne pathogens (<i>Escherichia coli</i>, <i>Staphylococcus aureus</i>, <i>Rhizopus stolonifer</i>, and <i>Aspergillus niger</i>). The addition of keratin enhanced the film's tensile strength to 16.64 MPa, a 403% increase compared to the gelatin film. However, incorporating 2% chitosan functionalized silver nanoparticles reduced the tensile strength to 9.07 MPa compared to the Gelatin-Keratin film. The distribution of nanoparticles and the interaction between the polymer chains were analyzed using scanning electron microscopy and Fourier transform infrared spectroscopy. The composite films also exhibited significant UV blocking efficiency, achieving 99% blockage of ultraviolet A and 100% blockage of ultraviolet B. The biocompatibility of the films was tested with MG63 cell lines, showing that silver nanoparticle concentrations (0.3%–2%) improved cell viability to 87% after 96 h of incubation. These findings reveal that the bionanocomposite films exhibit strong antibacterial and antifungal properties, along with excellent biocompatibility, making them ideal materials for wound healing and tissue engineering applications.</p>\\n </div>\",\"PeriodicalId\":8866,\"journal\":{\"name\":\"Biopolymers\",\"volume\":\"116 3\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biopolymers\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bip.70023\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biopolymers","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bip.70023","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究研究了由明胶和可持续来源的角蛋白结合壳聚糖功能化纳米银制成的生物复合膜的性能。采用不同浓度的壳聚糖溶液(即0.4%、0.6%、0.8%和1% w/v)合成纳米银,并对其粒径、分布以及对食源性致病菌(大肠杆菌、金黄色葡萄球菌、匍生根霉和黑曲霉)的抗菌和抗真菌活性进行了评价。角蛋白的加入使膜的抗拉强度达到16.64 MPa,比明胶膜提高了403%。然而,与明胶-角蛋白膜相比,加入2%壳聚糖功能化银纳米粒子将拉伸强度降低至9.07 MPa。利用扫描电镜和傅里叶变换红外光谱分析了纳米颗粒的分布和聚合物链之间的相互作用。复合膜对紫外线A的阻隔率达到99%,对紫外线b的阻隔率达到100%。用MG63细胞株对复合膜进行了生物相容性测试,结果表明,纳米银浓度(0.3%-2%)在培养96 h后可使细胞存活率提高至87%。这些发现表明,生物纳米复合膜具有很强的抗菌和抗真菌性能,以及良好的生物相容性,使其成为伤口愈合和组织工程应用的理想材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Studies on Gelatin-Keratin-Chitosan Functionalized Silver Nanoparticles Based Bionanocomposite Films With Improved Antimicrobial and UV-Blocking Properties

Studies on Gelatin-Keratin-Chitosan Functionalized Silver Nanoparticles Based Bionanocomposite Films With Improved Antimicrobial and UV-Blocking Properties

This study investigates the properties of a biocomposite film made from gelatin and sustainably sourced keratin incorporating chitosan-functionalized silver nanoparticles. Varied concentrations of chitosan solution (i.e., 0.4%, 0.6%, 0.8%, and 1% w/v) were used in the synthesis of silver nanoparticles, and their particle size, distribution, and antibacterial and antifungal activities were evaluated against foodborne pathogens (Escherichia coli, Staphylococcus aureus, Rhizopus stolonifer, and Aspergillus niger). The addition of keratin enhanced the film's tensile strength to 16.64 MPa, a 403% increase compared to the gelatin film. However, incorporating 2% chitosan functionalized silver nanoparticles reduced the tensile strength to 9.07 MPa compared to the Gelatin-Keratin film. The distribution of nanoparticles and the interaction between the polymer chains were analyzed using scanning electron microscopy and Fourier transform infrared spectroscopy. The composite films also exhibited significant UV blocking efficiency, achieving 99% blockage of ultraviolet A and 100% blockage of ultraviolet B. The biocompatibility of the films was tested with MG63 cell lines, showing that silver nanoparticle concentrations (0.3%–2%) improved cell viability to 87% after 96 h of incubation. These findings reveal that the bionanocomposite films exhibit strong antibacterial and antifungal properties, along with excellent biocompatibility, making them ideal materials for wound healing and tissue engineering applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biopolymers
Biopolymers 生物-生化与分子生物学
CiteScore
5.30
自引率
0.00%
发文量
48
审稿时长
3 months
期刊介绍: Founded in 1963, Biopolymers publishes strictly peer-reviewed papers examining naturally occurring and synthetic biological macromolecules. By including experimental and theoretical studies on the fundamental behaviour as well as applications of biopolymers, the journal serves the interdisciplinary biochemical, biophysical, biomaterials and biomedical research communities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信