旋风分离器技术综述

IF 1.6 4区 工程技术 Q3 ENGINEERING, CHEMICAL
Ece Aylı, Eyup Kocak
{"title":"旋风分离器技术综述","authors":"Ece Aylı,&nbsp;Eyup Kocak","doi":"10.1002/cjce.25526","DOIUrl":null,"url":null,"abstract":"<p>This review article examines the working principles, optimal dimensions, effects of key parameters, and the results of experimental/numerical studies on cyclone separators. Investigations have been conducted on the effects of parameters such as vortex finder diameter, conical part diameter, cyclone separator diameter, cylinder height, inlet height, inlet width, vortex finder length, and cyclone total length on efficiency, performance, and pressure drop. Furthermore, the article explores current modifications and efforts to improve efficiency. These modifications include adding water nozzles, inserting ribs, employing double-stage cyclones, incorporating additional inlets, using finned cylinder bodies, adding extra top inlets, introducing liquid jets, employing helical roof inlets, adding laminarizers, incorporating internal spiral vanes, and employing slotted vortex finders. While serving as a guide to optimize the design and performance of cyclone separators, this article emphasizes new and innovative approaches to enhance their industrial applicability. By compiling studies conducted from conceptual birth to the present, the aim of this article is to serve as a guidebook.</p>","PeriodicalId":9400,"journal":{"name":"Canadian Journal of Chemical Engineering","volume":"103 6","pages":"2751-2789"},"PeriodicalIF":1.6000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comprehensive review of cyclone separator technology\",\"authors\":\"Ece Aylı,&nbsp;Eyup Kocak\",\"doi\":\"10.1002/cjce.25526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This review article examines the working principles, optimal dimensions, effects of key parameters, and the results of experimental/numerical studies on cyclone separators. Investigations have been conducted on the effects of parameters such as vortex finder diameter, conical part diameter, cyclone separator diameter, cylinder height, inlet height, inlet width, vortex finder length, and cyclone total length on efficiency, performance, and pressure drop. Furthermore, the article explores current modifications and efforts to improve efficiency. These modifications include adding water nozzles, inserting ribs, employing double-stage cyclones, incorporating additional inlets, using finned cylinder bodies, adding extra top inlets, introducing liquid jets, employing helical roof inlets, adding laminarizers, incorporating internal spiral vanes, and employing slotted vortex finders. While serving as a guide to optimize the design and performance of cyclone separators, this article emphasizes new and innovative approaches to enhance their industrial applicability. By compiling studies conducted from conceptual birth to the present, the aim of this article is to serve as a guidebook.</p>\",\"PeriodicalId\":9400,\"journal\":{\"name\":\"Canadian Journal of Chemical Engineering\",\"volume\":\"103 6\",\"pages\":\"2751-2789\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cjce.25526\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjce.25526","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文综述了旋风分离器的工作原理、最佳尺寸、关键参数的影响以及实验和数值研究的结果。研究了寻涡器直径、锥形部分直径、旋风分离器直径、筒体高度、进口高度、进口宽度、寻涡器长度和旋风分离器总长度等参数对效率、性能和压降的影响。此外,本文还探讨了目前为提高效率所做的修改和努力。这些改进包括增加水喷嘴,插入肋,采用双级旋风,合并额外的进口,使用翅片圆柱体,增加额外的顶部进口,引入液体射流,采用螺旋屋顶进口,增加层压板,合并内部螺旋叶片,并采用开槽涡流探测器。在对旋风分离器的设计和性能进行优化的同时,本文强调了新的和创新的方法来提高其工业适用性。通过汇编从概念诞生到现在的研究,本文的目的是作为一本指南。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comprehensive review of cyclone separator technology

This review article examines the working principles, optimal dimensions, effects of key parameters, and the results of experimental/numerical studies on cyclone separators. Investigations have been conducted on the effects of parameters such as vortex finder diameter, conical part diameter, cyclone separator diameter, cylinder height, inlet height, inlet width, vortex finder length, and cyclone total length on efficiency, performance, and pressure drop. Furthermore, the article explores current modifications and efforts to improve efficiency. These modifications include adding water nozzles, inserting ribs, employing double-stage cyclones, incorporating additional inlets, using finned cylinder bodies, adding extra top inlets, introducing liquid jets, employing helical roof inlets, adding laminarizers, incorporating internal spiral vanes, and employing slotted vortex finders. While serving as a guide to optimize the design and performance of cyclone separators, this article emphasizes new and innovative approaches to enhance their industrial applicability. By compiling studies conducted from conceptual birth to the present, the aim of this article is to serve as a guidebook.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Canadian Journal of Chemical Engineering
Canadian Journal of Chemical Engineering 工程技术-工程:化工
CiteScore
3.60
自引率
14.30%
发文量
448
审稿时长
3.2 months
期刊介绍: The Canadian Journal of Chemical Engineering (CJChE) publishes original research articles, new theoretical interpretation or experimental findings and critical reviews in the science or industrial practice of chemical and biochemical processes. Preference is given to papers having a clearly indicated scope and applicability in any of the following areas: Fluid mechanics, heat and mass transfer, multiphase flows, separations processes, thermodynamics, process systems engineering, reactors and reaction kinetics, catalysis, interfacial phenomena, electrochemical phenomena, bioengineering, minerals processing and natural products and environmental and energy engineering. Papers that merely describe or present a conventional or routine analysis of existing processes will not be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信