{"title":"旋风分离器技术综述","authors":"Ece Aylı, Eyup Kocak","doi":"10.1002/cjce.25526","DOIUrl":null,"url":null,"abstract":"<p>This review article examines the working principles, optimal dimensions, effects of key parameters, and the results of experimental/numerical studies on cyclone separators. Investigations have been conducted on the effects of parameters such as vortex finder diameter, conical part diameter, cyclone separator diameter, cylinder height, inlet height, inlet width, vortex finder length, and cyclone total length on efficiency, performance, and pressure drop. Furthermore, the article explores current modifications and efforts to improve efficiency. These modifications include adding water nozzles, inserting ribs, employing double-stage cyclones, incorporating additional inlets, using finned cylinder bodies, adding extra top inlets, introducing liquid jets, employing helical roof inlets, adding laminarizers, incorporating internal spiral vanes, and employing slotted vortex finders. While serving as a guide to optimize the design and performance of cyclone separators, this article emphasizes new and innovative approaches to enhance their industrial applicability. By compiling studies conducted from conceptual birth to the present, the aim of this article is to serve as a guidebook.</p>","PeriodicalId":9400,"journal":{"name":"Canadian Journal of Chemical Engineering","volume":"103 6","pages":"2751-2789"},"PeriodicalIF":1.6000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comprehensive review of cyclone separator technology\",\"authors\":\"Ece Aylı, Eyup Kocak\",\"doi\":\"10.1002/cjce.25526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This review article examines the working principles, optimal dimensions, effects of key parameters, and the results of experimental/numerical studies on cyclone separators. Investigations have been conducted on the effects of parameters such as vortex finder diameter, conical part diameter, cyclone separator diameter, cylinder height, inlet height, inlet width, vortex finder length, and cyclone total length on efficiency, performance, and pressure drop. Furthermore, the article explores current modifications and efforts to improve efficiency. These modifications include adding water nozzles, inserting ribs, employing double-stage cyclones, incorporating additional inlets, using finned cylinder bodies, adding extra top inlets, introducing liquid jets, employing helical roof inlets, adding laminarizers, incorporating internal spiral vanes, and employing slotted vortex finders. While serving as a guide to optimize the design and performance of cyclone separators, this article emphasizes new and innovative approaches to enhance their industrial applicability. By compiling studies conducted from conceptual birth to the present, the aim of this article is to serve as a guidebook.</p>\",\"PeriodicalId\":9400,\"journal\":{\"name\":\"Canadian Journal of Chemical Engineering\",\"volume\":\"103 6\",\"pages\":\"2751-2789\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cjce.25526\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjce.25526","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
A comprehensive review of cyclone separator technology
This review article examines the working principles, optimal dimensions, effects of key parameters, and the results of experimental/numerical studies on cyclone separators. Investigations have been conducted on the effects of parameters such as vortex finder diameter, conical part diameter, cyclone separator diameter, cylinder height, inlet height, inlet width, vortex finder length, and cyclone total length on efficiency, performance, and pressure drop. Furthermore, the article explores current modifications and efforts to improve efficiency. These modifications include adding water nozzles, inserting ribs, employing double-stage cyclones, incorporating additional inlets, using finned cylinder bodies, adding extra top inlets, introducing liquid jets, employing helical roof inlets, adding laminarizers, incorporating internal spiral vanes, and employing slotted vortex finders. While serving as a guide to optimize the design and performance of cyclone separators, this article emphasizes new and innovative approaches to enhance their industrial applicability. By compiling studies conducted from conceptual birth to the present, the aim of this article is to serve as a guidebook.
期刊介绍:
The Canadian Journal of Chemical Engineering (CJChE) publishes original research articles, new theoretical interpretation or experimental findings and critical reviews in the science or industrial practice of chemical and biochemical processes. Preference is given to papers having a clearly indicated scope and applicability in any of the following areas: Fluid mechanics, heat and mass transfer, multiphase flows, separations processes, thermodynamics, process systems engineering, reactors and reaction kinetics, catalysis, interfacial phenomena, electrochemical phenomena, bioengineering, minerals processing and natural products and environmental and energy engineering. Papers that merely describe or present a conventional or routine analysis of existing processes will not be considered.