Bárbara L. T. Rosa, Paulo E. Faria Junior, Alisson R. Cadore, Yuhui Yang, Aris Koulas-Simos, Chirag C. Palekar, Seth Ariel Tongay, Jaroslav Fabian, Stephan Reitzenstein
{"title":"室温下扭曲MoSe2均匀层中谷间Trions的电操纵(物理学报)。研究》5/2025)","authors":"Bárbara L. T. Rosa, Paulo E. Faria Junior, Alisson R. Cadore, Yuhui Yang, Aris Koulas-Simos, Chirag C. Palekar, Seth Ariel Tongay, Jaroslav Fabian, Stephan Reitzenstein","doi":"10.1002/apxr.202570013","DOIUrl":null,"url":null,"abstract":"<p><b>Electrical Control of Excitonic Complexes</b></p><p>The cover feature showcases the exploration of exciton complexes in electrically contacted artificially twisted MoSe<sub>2</sub> homobilayers, highlighting their unique optical and electronic properties. Unlike conventional heterobilayers, homobilayers benefit from the absence of lattice mismatch, enhancing their potential for practical applications. In article number 2400135, Bárbara L. T. Rosa, Stephan Reitzenstein and colleagues unveil the tunable excitonic behavior of these systems through electrical charge carrier concentration control at room temperature. By performing gate-dependent photoluminescence experiments on devices with various twist angles, they demonstrate a twist-angle-dependent doping effect that significantly influences the neutral and negatively charged intralayer excitons. The findings substantially advance the understanding of TMD homobilayers by enabling control over their emission properties, laying a strong foundation for future applications in van der Waals semiconductor devices.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":100035,"journal":{"name":"Advanced Physics Research","volume":"4 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/apxr.202570013","citationCount":"0","resultStr":"{\"title\":\"Electrical Manipulation of Intervalley Trions in Twisted MoSe2 Homobilayers at Room Temperature (Adv. Phys. Res. 5/2025)\",\"authors\":\"Bárbara L. T. Rosa, Paulo E. Faria Junior, Alisson R. Cadore, Yuhui Yang, Aris Koulas-Simos, Chirag C. Palekar, Seth Ariel Tongay, Jaroslav Fabian, Stephan Reitzenstein\",\"doi\":\"10.1002/apxr.202570013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>Electrical Control of Excitonic Complexes</b></p><p>The cover feature showcases the exploration of exciton complexes in electrically contacted artificially twisted MoSe<sub>2</sub> homobilayers, highlighting their unique optical and electronic properties. Unlike conventional heterobilayers, homobilayers benefit from the absence of lattice mismatch, enhancing their potential for practical applications. In article number 2400135, Bárbara L. T. Rosa, Stephan Reitzenstein and colleagues unveil the tunable excitonic behavior of these systems through electrical charge carrier concentration control at room temperature. By performing gate-dependent photoluminescence experiments on devices with various twist angles, they demonstrate a twist-angle-dependent doping effect that significantly influences the neutral and negatively charged intralayer excitons. The findings substantially advance the understanding of TMD homobilayers by enabling control over their emission properties, laying a strong foundation for future applications in van der Waals semiconductor devices.\\n\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":100035,\"journal\":{\"name\":\"Advanced Physics Research\",\"volume\":\"4 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/apxr.202570013\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Physics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/apxr.202570013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Physics Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/apxr.202570013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
激子络合物的电气控制覆盖功能展示了电接触人工扭曲MoSe2均匀层中激子络合物的探索,突出了其独特的光学和电子性质。与传统的异质层不同,均质层受益于没有晶格错配,增强了其实际应用的潜力。在文章编号2400135中,Bárbara L. T. Rosa, Stephan Reitzenstein及其同事通过在室温下控制电荷载流子浓度,揭示了这些系统的可调谐激子行为。通过在不同扭角的器件上进行门相关的光致发光实验,他们证明了扭角相关的掺杂效应显著影响中性和带负电荷的层内激子。这一发现通过控制TMD均匀层的发射特性,极大地促进了对它们的理解,为未来在范德华半导体器件中的应用奠定了坚实的基础。
Electrical Manipulation of Intervalley Trions in Twisted MoSe2 Homobilayers at Room Temperature (Adv. Phys. Res. 5/2025)
Electrical Control of Excitonic Complexes
The cover feature showcases the exploration of exciton complexes in electrically contacted artificially twisted MoSe2 homobilayers, highlighting their unique optical and electronic properties. Unlike conventional heterobilayers, homobilayers benefit from the absence of lattice mismatch, enhancing their potential for practical applications. In article number 2400135, Bárbara L. T. Rosa, Stephan Reitzenstein and colleagues unveil the tunable excitonic behavior of these systems through electrical charge carrier concentration control at room temperature. By performing gate-dependent photoluminescence experiments on devices with various twist angles, they demonstrate a twist-angle-dependent doping effect that significantly influences the neutral and negatively charged intralayer excitons. The findings substantially advance the understanding of TMD homobilayers by enabling control over their emission properties, laying a strong foundation for future applications in van der Waals semiconductor devices.