{"title":"基于卫星数据的拉格朗日框架变换研究北极海洋冷空气爆发中的云微物理转变","authors":"Hannah Seppala, Zhibo Zhang, Xue Zheng","doi":"10.1029/2025GL115637","DOIUrl":null,"url":null,"abstract":"<p>Arctic marine cold air outbreaks (CAOs) generate distinct and dynamic cloud regimes due to intense air-sea interactions. To understand the temporal evolution of CAO cloud properties and compare different CAO events, a Lagrangian perspective is particularly useful. We developed a novel technique that enables the conversion of inherently Eulerian satellite data into a Lagrangian framework, combining the broad spatiotemporal coverage of satellite observations with the advantages of Lagrangian tracking. This technique was applied to eight CAO cases associated with a recent field campaign. Our results reveal a striking contrast among the cases in terms of cloud-top phase transitions, providing new insights into the evolution of CAO cloud properties.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"52 9","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2025GL115637","citationCount":"0","resultStr":"{\"title\":\"Developing a Lagrangian Frame Transformation on Satellite Data to Study Cloud Microphysical Transitions in Arctic Marine Cold Air Outbreaks\",\"authors\":\"Hannah Seppala, Zhibo Zhang, Xue Zheng\",\"doi\":\"10.1029/2025GL115637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Arctic marine cold air outbreaks (CAOs) generate distinct and dynamic cloud regimes due to intense air-sea interactions. To understand the temporal evolution of CAO cloud properties and compare different CAO events, a Lagrangian perspective is particularly useful. We developed a novel technique that enables the conversion of inherently Eulerian satellite data into a Lagrangian framework, combining the broad spatiotemporal coverage of satellite observations with the advantages of Lagrangian tracking. This technique was applied to eight CAO cases associated with a recent field campaign. Our results reveal a striking contrast among the cases in terms of cloud-top phase transitions, providing new insights into the evolution of CAO cloud properties.</p>\",\"PeriodicalId\":12523,\"journal\":{\"name\":\"Geophysical Research Letters\",\"volume\":\"52 9\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2025GL115637\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Research Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2025GL115637\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2025GL115637","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Developing a Lagrangian Frame Transformation on Satellite Data to Study Cloud Microphysical Transitions in Arctic Marine Cold Air Outbreaks
Arctic marine cold air outbreaks (CAOs) generate distinct and dynamic cloud regimes due to intense air-sea interactions. To understand the temporal evolution of CAO cloud properties and compare different CAO events, a Lagrangian perspective is particularly useful. We developed a novel technique that enables the conversion of inherently Eulerian satellite data into a Lagrangian framework, combining the broad spatiotemporal coverage of satellite observations with the advantages of Lagrangian tracking. This technique was applied to eight CAO cases associated with a recent field campaign. Our results reveal a striking contrast among the cases in terms of cloud-top phase transitions, providing new insights into the evolution of CAO cloud properties.
期刊介绍:
Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.