Benjamin T. Wilder, Kevin R. Hultine, Wetherbee Bryan Dorshow, Sula E. Vanderplank, Blanca R. López, Alfonso Medel-Narváez, Monica Marvan, Kristen Kindl, Aryn Musgrave, Shane Macfarlan, Exequiel Ezcurra
{"title":"索诺兰沙漠植物对异常高温和干旱事件的响应","authors":"Benjamin T. Wilder, Kevin R. Hultine, Wetherbee Bryan Dorshow, Sula E. Vanderplank, Blanca R. López, Alfonso Medel-Narváez, Monica Marvan, Kristen Kindl, Aryn Musgrave, Shane Macfarlan, Exequiel Ezcurra","doi":"10.1111/gcb.70217","DOIUrl":null,"url":null,"abstract":"<p>A shift to greater aridification in dry regions of the world is ongoing and rapidly increasing in intensity, including in the biodiverse Sonoran Desert of the Southwest United States and northern Mexico. In addition to experiencing over two decades of drought, the Sonoran Desert is facing anomalous heat events that are increasing in frequency, evidenced in a record hot and dry period from 2020 to 2021. This article evaluates the impacts of the 2020–2021 region-wide heat and drought event at three scales: (1) a landscape level assessment of ecosystem stress across the entirety of the Sonoran Desert based on precipitation and temperature data from meteorological stations and a satellite-derived vegetation health index (VHI), (2) assessments of stress on iconic columnar cacti and succulent trees, and (3) mechanistic plant responses to extreme heat and drought, and secondary biotic stressors from insect attacks. 2020 was the hottest and driest year since 1980 across the Sonoran Desert region, and vegetation health, determined from VHI, was also near its lowest point. Field-based assessments of columnar cacti across the Sonoran Desert revealed high levels of acute plant stress, including cactus scorching, defined by rapid onset of discolored photosynthetic tissue that leads to permanent photosynthetic dysfunction and increased plant mortality. Tissue scorching corresponded with a three-fold increase in mortality of giant cactus species across the region relative to background levels following 2020–2021. Likewise, repeated plant health surveys show a persistent legacy of the 2020–2021 anomaly, resulting in a marked reduction in the current health and survival of the iconic giant saguaro (<i>Carnegiea gigantea</i>) in the northern Sonoran Desert. This multi-scale assessment of previously anomalous heat and drought events on succulent desert plants shows landscape-wide impacts that could fundamentally reshape populations of these keystone species and the communities that depend on them.</p>","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"31 5","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcb.70217","citationCount":"0","resultStr":"{\"title\":\"Plant Responses to Anomalous Heat and Drought Events in the Sonoran Desert\",\"authors\":\"Benjamin T. Wilder, Kevin R. Hultine, Wetherbee Bryan Dorshow, Sula E. Vanderplank, Blanca R. López, Alfonso Medel-Narváez, Monica Marvan, Kristen Kindl, Aryn Musgrave, Shane Macfarlan, Exequiel Ezcurra\",\"doi\":\"10.1111/gcb.70217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A shift to greater aridification in dry regions of the world is ongoing and rapidly increasing in intensity, including in the biodiverse Sonoran Desert of the Southwest United States and northern Mexico. In addition to experiencing over two decades of drought, the Sonoran Desert is facing anomalous heat events that are increasing in frequency, evidenced in a record hot and dry period from 2020 to 2021. This article evaluates the impacts of the 2020–2021 region-wide heat and drought event at three scales: (1) a landscape level assessment of ecosystem stress across the entirety of the Sonoran Desert based on precipitation and temperature data from meteorological stations and a satellite-derived vegetation health index (VHI), (2) assessments of stress on iconic columnar cacti and succulent trees, and (3) mechanistic plant responses to extreme heat and drought, and secondary biotic stressors from insect attacks. 2020 was the hottest and driest year since 1980 across the Sonoran Desert region, and vegetation health, determined from VHI, was also near its lowest point. Field-based assessments of columnar cacti across the Sonoran Desert revealed high levels of acute plant stress, including cactus scorching, defined by rapid onset of discolored photosynthetic tissue that leads to permanent photosynthetic dysfunction and increased plant mortality. Tissue scorching corresponded with a three-fold increase in mortality of giant cactus species across the region relative to background levels following 2020–2021. Likewise, repeated plant health surveys show a persistent legacy of the 2020–2021 anomaly, resulting in a marked reduction in the current health and survival of the iconic giant saguaro (<i>Carnegiea gigantea</i>) in the northern Sonoran Desert. This multi-scale assessment of previously anomalous heat and drought events on succulent desert plants shows landscape-wide impacts that could fundamentally reshape populations of these keystone species and the communities that depend on them.</p>\",\"PeriodicalId\":175,\"journal\":{\"name\":\"Global Change Biology\",\"volume\":\"31 5\",\"pages\":\"\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcb.70217\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Change Biology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gcb.70217\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIODIVERSITY CONSERVATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcb.70217","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
Plant Responses to Anomalous Heat and Drought Events in the Sonoran Desert
A shift to greater aridification in dry regions of the world is ongoing and rapidly increasing in intensity, including in the biodiverse Sonoran Desert of the Southwest United States and northern Mexico. In addition to experiencing over two decades of drought, the Sonoran Desert is facing anomalous heat events that are increasing in frequency, evidenced in a record hot and dry period from 2020 to 2021. This article evaluates the impacts of the 2020–2021 region-wide heat and drought event at three scales: (1) a landscape level assessment of ecosystem stress across the entirety of the Sonoran Desert based on precipitation and temperature data from meteorological stations and a satellite-derived vegetation health index (VHI), (2) assessments of stress on iconic columnar cacti and succulent trees, and (3) mechanistic plant responses to extreme heat and drought, and secondary biotic stressors from insect attacks. 2020 was the hottest and driest year since 1980 across the Sonoran Desert region, and vegetation health, determined from VHI, was also near its lowest point. Field-based assessments of columnar cacti across the Sonoran Desert revealed high levels of acute plant stress, including cactus scorching, defined by rapid onset of discolored photosynthetic tissue that leads to permanent photosynthetic dysfunction and increased plant mortality. Tissue scorching corresponded with a three-fold increase in mortality of giant cactus species across the region relative to background levels following 2020–2021. Likewise, repeated plant health surveys show a persistent legacy of the 2020–2021 anomaly, resulting in a marked reduction in the current health and survival of the iconic giant saguaro (Carnegiea gigantea) in the northern Sonoran Desert. This multi-scale assessment of previously anomalous heat and drought events on succulent desert plants shows landscape-wide impacts that could fundamentally reshape populations of these keystone species and the communities that depend on them.
期刊介绍:
Global Change Biology is an environmental change journal committed to shaping the future and addressing the world's most pressing challenges, including sustainability, climate change, environmental protection, food and water safety, and global health.
Dedicated to fostering a profound understanding of the impacts of global change on biological systems and offering innovative solutions, the journal publishes a diverse range of content, including primary research articles, technical advances, research reviews, reports, opinions, perspectives, commentaries, and letters. Starting with the 2024 volume, Global Change Biology will transition to an online-only format, enhancing accessibility and contributing to the evolution of scholarly communication.