考虑权敏感性和柔性负荷的综合能源系统优化调度方法

IF 4.3 3区 工程技术 Q2 ENERGY & FUELS
Jianlin Li, Yiwen Wu, Suliang Ma, Xinzhe Sun, Wenfeng Di
{"title":"考虑权敏感性和柔性负荷的综合能源系统优化调度方法","authors":"Jianlin Li,&nbsp;Yiwen Wu,&nbsp;Suliang Ma,&nbsp;Xinzhe Sun,&nbsp;Wenfeng Di","doi":"10.1155/er/3719597","DOIUrl":null,"url":null,"abstract":"<div>\n <p>The multiobjective optimization problem in the integrated energy system (IES) is crucial for achieving optimal scheduling of the system. This paper proposes a weight optimization method for IES scheduling based on the weight sensitivity (WS) index. First, an IES coupling network model is established, considering the network structure of the power grid, natural gas network, and heating network. The time-of-use price is determined based on generation resources to guide the demand for flexible load (FXL). Next, the weights of the multiobjective function are optimized using the coefficient of variation of the WS index. The analytic hierarchy process (AHP) is utilized to achieve multiobjective function weight optimization, considering environmental friendliness and installed capacity. The optimal scheduling model is solved using CPLEX, and the results of different weight optimization methods are compared. The change in the carbon emission (CE) index under the increasing permeability trend is analyzed, and the guiding effect of intraday prices based on power generation resources on FXL is studied. The simulation results demonstrate that: (1) Single-objective weight optimization based on the WS index reduces the objective function value by 0.47%, and the objective function value based on AHP, considering multiobjective weight optimization, decreases by 10.31%, indicating that the WS index is suitable for comprehensive weight optimization. (2) As the IES permeability increases by 46.31%, the IES CE decreases by 94.69%, and the demand for energy storage increases by 7.32%. (3) Under the guidance of time-of-use prices based on power generation resources, 51.47% of FXL autonomously shifts power consumption time, reducing electricity purchase fees by 24.61%. This paper provides valuable insights for utilizing the WS index to optimize IES scheduling.</p>\n </div>","PeriodicalId":14051,"journal":{"name":"International Journal of Energy Research","volume":"2025 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/er/3719597","citationCount":"0","resultStr":"{\"title\":\"Optimization Scheduling Method for Integrated Energy System Considering Weight Sensitivity and Flexible Load\",\"authors\":\"Jianlin Li,&nbsp;Yiwen Wu,&nbsp;Suliang Ma,&nbsp;Xinzhe Sun,&nbsp;Wenfeng Di\",\"doi\":\"10.1155/er/3719597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>The multiobjective optimization problem in the integrated energy system (IES) is crucial for achieving optimal scheduling of the system. This paper proposes a weight optimization method for IES scheduling based on the weight sensitivity (WS) index. First, an IES coupling network model is established, considering the network structure of the power grid, natural gas network, and heating network. The time-of-use price is determined based on generation resources to guide the demand for flexible load (FXL). Next, the weights of the multiobjective function are optimized using the coefficient of variation of the WS index. The analytic hierarchy process (AHP) is utilized to achieve multiobjective function weight optimization, considering environmental friendliness and installed capacity. The optimal scheduling model is solved using CPLEX, and the results of different weight optimization methods are compared. The change in the carbon emission (CE) index under the increasing permeability trend is analyzed, and the guiding effect of intraday prices based on power generation resources on FXL is studied. The simulation results demonstrate that: (1) Single-objective weight optimization based on the WS index reduces the objective function value by 0.47%, and the objective function value based on AHP, considering multiobjective weight optimization, decreases by 10.31%, indicating that the WS index is suitable for comprehensive weight optimization. (2) As the IES permeability increases by 46.31%, the IES CE decreases by 94.69%, and the demand for energy storage increases by 7.32%. (3) Under the guidance of time-of-use prices based on power generation resources, 51.47% of FXL autonomously shifts power consumption time, reducing electricity purchase fees by 24.61%. This paper provides valuable insights for utilizing the WS index to optimize IES scheduling.</p>\\n </div>\",\"PeriodicalId\":14051,\"journal\":{\"name\":\"International Journal of Energy Research\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/er/3719597\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Energy Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/er/3719597\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Energy Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/er/3719597","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

综合能源系统中的多目标优化问题是实现系统最优调度的关键问题。提出了一种基于权值灵敏度(WS)指标的IES调度权值优化方法。首先,考虑电网、天然气网和供热网的网络结构,建立了IES耦合网络模型;根据发电资源确定分时电价,引导柔性负荷需求。其次,利用WS指数的变异系数对多目标函数的权重进行优化。在考虑环境友好性和装机容量的情况下,采用层次分析法实现多目标函数权值优化。采用CPLEX算法求解最优调度模型,并比较了不同权重优化方法的优化结果。分析了渗透率增加趋势下碳排放(CE)指数的变化,研究了基于发电资源的日内电价对FXL的指导作用。仿真结果表明:(1)基于WS指标的单目标权值优化使目标函数值降低0.47%,考虑多目标权值优化的基于AHP的目标函数值降低10.31%,表明WS指标适合进行综合权值优化。(2)当IES渗透率增加46.31%时,IES CE降低94.69%,储能需求增加7.32%。(3)在基于发电资源的分时电价指导下,51.47%的FXL自主转移用电时间,降低购电费用24.61%。本文为利用WS索引优化IES调度提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Optimization Scheduling Method for Integrated Energy System Considering Weight Sensitivity and Flexible Load

Optimization Scheduling Method for Integrated Energy System Considering Weight Sensitivity and Flexible Load

The multiobjective optimization problem in the integrated energy system (IES) is crucial for achieving optimal scheduling of the system. This paper proposes a weight optimization method for IES scheduling based on the weight sensitivity (WS) index. First, an IES coupling network model is established, considering the network structure of the power grid, natural gas network, and heating network. The time-of-use price is determined based on generation resources to guide the demand for flexible load (FXL). Next, the weights of the multiobjective function are optimized using the coefficient of variation of the WS index. The analytic hierarchy process (AHP) is utilized to achieve multiobjective function weight optimization, considering environmental friendliness and installed capacity. The optimal scheduling model is solved using CPLEX, and the results of different weight optimization methods are compared. The change in the carbon emission (CE) index under the increasing permeability trend is analyzed, and the guiding effect of intraday prices based on power generation resources on FXL is studied. The simulation results demonstrate that: (1) Single-objective weight optimization based on the WS index reduces the objective function value by 0.47%, and the objective function value based on AHP, considering multiobjective weight optimization, decreases by 10.31%, indicating that the WS index is suitable for comprehensive weight optimization. (2) As the IES permeability increases by 46.31%, the IES CE decreases by 94.69%, and the demand for energy storage increases by 7.32%. (3) Under the guidance of time-of-use prices based on power generation resources, 51.47% of FXL autonomously shifts power consumption time, reducing electricity purchase fees by 24.61%. This paper provides valuable insights for utilizing the WS index to optimize IES scheduling.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Energy Research
International Journal of Energy Research 工程技术-核科学技术
CiteScore
9.80
自引率
8.70%
发文量
1170
审稿时长
3.1 months
期刊介绍: The International Journal of Energy Research (IJER) is dedicated to providing a multidisciplinary, unique platform for researchers, scientists, engineers, technology developers, planners, and policy makers to present their research results and findings in a compelling manner on novel energy systems and applications. IJER covers the entire spectrum of energy from production to conversion, conservation, management, systems, technologies, etc. We encourage papers submissions aiming at better efficiency, cost improvements, more effective resource use, improved design and analysis, reduced environmental impact, and hence leading to better sustainability. IJER is concerned with the development and exploitation of both advanced traditional and new energy sources, systems, technologies and applications. Interdisciplinary subjects in the area of novel energy systems and applications are also encouraged. High-quality research papers are solicited in, but are not limited to, the following areas with innovative and novel contents: -Biofuels and alternatives -Carbon capturing and storage technologies -Clean coal technologies -Energy conversion, conservation and management -Energy storage -Energy systems -Hybrid/combined/integrated energy systems for multi-generation -Hydrogen energy and fuel cells -Hydrogen production technologies -Micro- and nano-energy systems and technologies -Nuclear energy -Renewable energies (e.g. geothermal, solar, wind, hydro, tidal, wave, biomass) -Smart energy system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信