Muhammad Akhtar, Waqar Muhammad Ashraf, Nasir Hayat, Ghulam Moeen Uddin, Fahid Riaz
{"title":"燃气轮机转子早期故障检测的数值与实验研究","authors":"Muhammad Akhtar, Waqar Muhammad Ashraf, Nasir Hayat, Ghulam Moeen Uddin, Fahid Riaz","doi":"10.1002/ese3.70054","DOIUrl":null,"url":null,"abstract":"<p>Rotodynamic analysis is a key analysis for turbomachinery for investigating the health and integrity of equipment. Most of the analyses are performed at the design stage, while the actual machine behavior is different due to imperfections like unbalance, misalignment, cracks, and so forth. In this paper, a representative CAD model of a gas turbine rotor is developed to get the actual rotodynamic response of a rotor. Vibration data of the rotor is compared with that of the developed numerical model. The reference model representation of the actual machine in terms of critical speed and vibration value is found to be 99.7% and 99.1%, respectively. Rotodynamic analyses of numerical models are performed for early identification of faults under various scenarios of unbalance, crack, and crack with unbalance. For these scenarios, modal analysis and harmonic analysis are performed. Natural frequencies and vibration behavior are utilized to capture the variation that indicates the presence of a fault. This way, early identification of faults is made to save the machine from damage. Within the unbalance range of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mrow>\n <mn>1.0</mn>\n \n <mo>×</mo>\n \n <mn>10</mn>\n </mrow>\n \n <mrow>\n <mo>−</mo>\n \n <mn>9</mn>\n </mrow>\n </msup>\n </mrow>\n </mrow>\n </semantics></math> to 0.5 kg, a direct relation between change in unbalance mass and vibration amplitude is observed in the case of unbalance and unbalance with crack. Similarly, for cracks (of 1–3 mm thickness and depth up to 372 mm), a shift in maximum vibration amplitude frequency to first critical speed from second critical speed is noted. Hilbert transform is utilized to track the nonlinearity especially up to an operating speed of 3000 rpm (50 Hz). These key outcomes can be used to reduce rotary machine downtime by not only highlighting the problem at a very early stage but also swiftly identifying its root cause for the smooth working of rotary equipment in the industry.</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":"13 5","pages":"2546-2564"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.70054","citationCount":"0","resultStr":"{\"title\":\"Numerical and Experimental Investigation of Gas Turbine Rotor for Early Fault Detection\",\"authors\":\"Muhammad Akhtar, Waqar Muhammad Ashraf, Nasir Hayat, Ghulam Moeen Uddin, Fahid Riaz\",\"doi\":\"10.1002/ese3.70054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Rotodynamic analysis is a key analysis for turbomachinery for investigating the health and integrity of equipment. Most of the analyses are performed at the design stage, while the actual machine behavior is different due to imperfections like unbalance, misalignment, cracks, and so forth. In this paper, a representative CAD model of a gas turbine rotor is developed to get the actual rotodynamic response of a rotor. Vibration data of the rotor is compared with that of the developed numerical model. The reference model representation of the actual machine in terms of critical speed and vibration value is found to be 99.7% and 99.1%, respectively. Rotodynamic analyses of numerical models are performed for early identification of faults under various scenarios of unbalance, crack, and crack with unbalance. For these scenarios, modal analysis and harmonic analysis are performed. Natural frequencies and vibration behavior are utilized to capture the variation that indicates the presence of a fault. This way, early identification of faults is made to save the machine from damage. Within the unbalance range of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msup>\\n <mrow>\\n <mn>1.0</mn>\\n \\n <mo>×</mo>\\n \\n <mn>10</mn>\\n </mrow>\\n \\n <mrow>\\n <mo>−</mo>\\n \\n <mn>9</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n </mrow>\\n </semantics></math> to 0.5 kg, a direct relation between change in unbalance mass and vibration amplitude is observed in the case of unbalance and unbalance with crack. Similarly, for cracks (of 1–3 mm thickness and depth up to 372 mm), a shift in maximum vibration amplitude frequency to first critical speed from second critical speed is noted. Hilbert transform is utilized to track the nonlinearity especially up to an operating speed of 3000 rpm (50 Hz). These key outcomes can be used to reduce rotary machine downtime by not only highlighting the problem at a very early stage but also swiftly identifying its root cause for the smooth working of rotary equipment in the industry.</p>\",\"PeriodicalId\":11673,\"journal\":{\"name\":\"Energy Science & Engineering\",\"volume\":\"13 5\",\"pages\":\"2546-2564\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.70054\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Science & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ese3.70054\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ese3.70054","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Numerical and Experimental Investigation of Gas Turbine Rotor for Early Fault Detection
Rotodynamic analysis is a key analysis for turbomachinery for investigating the health and integrity of equipment. Most of the analyses are performed at the design stage, while the actual machine behavior is different due to imperfections like unbalance, misalignment, cracks, and so forth. In this paper, a representative CAD model of a gas turbine rotor is developed to get the actual rotodynamic response of a rotor. Vibration data of the rotor is compared with that of the developed numerical model. The reference model representation of the actual machine in terms of critical speed and vibration value is found to be 99.7% and 99.1%, respectively. Rotodynamic analyses of numerical models are performed for early identification of faults under various scenarios of unbalance, crack, and crack with unbalance. For these scenarios, modal analysis and harmonic analysis are performed. Natural frequencies and vibration behavior are utilized to capture the variation that indicates the presence of a fault. This way, early identification of faults is made to save the machine from damage. Within the unbalance range of to 0.5 kg, a direct relation between change in unbalance mass and vibration amplitude is observed in the case of unbalance and unbalance with crack. Similarly, for cracks (of 1–3 mm thickness and depth up to 372 mm), a shift in maximum vibration amplitude frequency to first critical speed from second critical speed is noted. Hilbert transform is utilized to track the nonlinearity especially up to an operating speed of 3000 rpm (50 Hz). These key outcomes can be used to reduce rotary machine downtime by not only highlighting the problem at a very early stage but also swiftly identifying its root cause for the smooth working of rotary equipment in the industry.
期刊介绍:
Energy Science & Engineering is a peer reviewed, open access journal dedicated to fundamental and applied research on energy and supply and use. Published as a co-operative venture of Wiley and SCI (Society of Chemical Industry), the journal offers authors a fast route to publication and the ability to share their research with the widest possible audience of scientists, professionals and other interested people across the globe. Securing an affordable and low carbon energy supply is a critical challenge of the 21st century and the solutions will require collaboration between scientists and engineers worldwide. This new journal aims to facilitate collaboration and spark innovation in energy research and development. Due to the importance of this topic to society and economic development the journal will give priority to quality research papers that are accessible to a broad readership and discuss sustainable, state-of-the art approaches to shaping the future of energy. This multidisciplinary journal will appeal to all researchers and professionals working in any area of energy in academia, industry or government, including scientists, engineers, consultants, policy-makers, government officials, economists and corporate organisations.