Debabrata Mazumdar, Taha Selim Ustun, Chiranjit Sain, Ahmet Onen
{"title":"太阳能直流微电网的高性能MPPT解决方案:利用河马算法提高效率和稳定性","authors":"Debabrata Mazumdar, Taha Selim Ustun, Chiranjit Sain, Ahmet Onen","doi":"10.1002/ese3.70052","DOIUrl":null,"url":null,"abstract":"<p>The rapid growth of modern civilization has led to increased global warming and climate challenges. Variations in atmospheric temperature, sunlight intensity and other factors significantly impact the performance of photovoltaic (PV) systems. To maximize energy production, these systems must operate efficiently at their Maximum Power Point under varying weather conditions. This study introduces a new Hippopotamus Algorithm (HA) designed for Maximum Power Point Tracking (MPPT) in solar PV systems connected to direct current (DC) microgrids. Performance of HA's is compared with three established optimization algorithms: Grey Wolf Optimization, Cuckoo Search Algorithm and Particle-Swarm Optimization across different operating scenarios and partial shading circumstances. Obtained results demonstrate that the HA not only achieves higher power output but also responds faster than existing methods. In each of the partial shading conditions, the efficiency range of proposed methods are 82.16% and 89.92%, respectively, and in the temperature variation case the efficiency is 84.67% which is far better than the other three approaches. As per stability concerns, the proposed HA-based MPPT approach attains minimal settling time and gives steady-state stable output power to its load in both partial shading, temperature fluctuation and steady-state conditions. A comparative analysis is also shown in tabular form in this article. Additionally, it effectively manages bidirectional power flow in both stable and fluctuating weather conditions. This approach ensures a resilient and sustainable architecture for low power generating situations when a DC microgrid is integrated with an HA-based MPPT system.</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":"13 5","pages":"2530-2545"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.70052","citationCount":"0","resultStr":"{\"title\":\"A High-Performance MPPT Solution for Solar DC Microgrids: Leveraging the Hippopotamus Algorithm for Greater Efficiency and Stability\",\"authors\":\"Debabrata Mazumdar, Taha Selim Ustun, Chiranjit Sain, Ahmet Onen\",\"doi\":\"10.1002/ese3.70052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The rapid growth of modern civilization has led to increased global warming and climate challenges. Variations in atmospheric temperature, sunlight intensity and other factors significantly impact the performance of photovoltaic (PV) systems. To maximize energy production, these systems must operate efficiently at their Maximum Power Point under varying weather conditions. This study introduces a new Hippopotamus Algorithm (HA) designed for Maximum Power Point Tracking (MPPT) in solar PV systems connected to direct current (DC) microgrids. Performance of HA's is compared with three established optimization algorithms: Grey Wolf Optimization, Cuckoo Search Algorithm and Particle-Swarm Optimization across different operating scenarios and partial shading circumstances. Obtained results demonstrate that the HA not only achieves higher power output but also responds faster than existing methods. In each of the partial shading conditions, the efficiency range of proposed methods are 82.16% and 89.92%, respectively, and in the temperature variation case the efficiency is 84.67% which is far better than the other three approaches. As per stability concerns, the proposed HA-based MPPT approach attains minimal settling time and gives steady-state stable output power to its load in both partial shading, temperature fluctuation and steady-state conditions. A comparative analysis is also shown in tabular form in this article. Additionally, it effectively manages bidirectional power flow in both stable and fluctuating weather conditions. This approach ensures a resilient and sustainable architecture for low power generating situations when a DC microgrid is integrated with an HA-based MPPT system.</p>\",\"PeriodicalId\":11673,\"journal\":{\"name\":\"Energy Science & Engineering\",\"volume\":\"13 5\",\"pages\":\"2530-2545\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.70052\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Science & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ese3.70052\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ese3.70052","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
A High-Performance MPPT Solution for Solar DC Microgrids: Leveraging the Hippopotamus Algorithm for Greater Efficiency and Stability
The rapid growth of modern civilization has led to increased global warming and climate challenges. Variations in atmospheric temperature, sunlight intensity and other factors significantly impact the performance of photovoltaic (PV) systems. To maximize energy production, these systems must operate efficiently at their Maximum Power Point under varying weather conditions. This study introduces a new Hippopotamus Algorithm (HA) designed for Maximum Power Point Tracking (MPPT) in solar PV systems connected to direct current (DC) microgrids. Performance of HA's is compared with three established optimization algorithms: Grey Wolf Optimization, Cuckoo Search Algorithm and Particle-Swarm Optimization across different operating scenarios and partial shading circumstances. Obtained results demonstrate that the HA not only achieves higher power output but also responds faster than existing methods. In each of the partial shading conditions, the efficiency range of proposed methods are 82.16% and 89.92%, respectively, and in the temperature variation case the efficiency is 84.67% which is far better than the other three approaches. As per stability concerns, the proposed HA-based MPPT approach attains minimal settling time and gives steady-state stable output power to its load in both partial shading, temperature fluctuation and steady-state conditions. A comparative analysis is also shown in tabular form in this article. Additionally, it effectively manages bidirectional power flow in both stable and fluctuating weather conditions. This approach ensures a resilient and sustainable architecture for low power generating situations when a DC microgrid is integrated with an HA-based MPPT system.
期刊介绍:
Energy Science & Engineering is a peer reviewed, open access journal dedicated to fundamental and applied research on energy and supply and use. Published as a co-operative venture of Wiley and SCI (Society of Chemical Industry), the journal offers authors a fast route to publication and the ability to share their research with the widest possible audience of scientists, professionals and other interested people across the globe. Securing an affordable and low carbon energy supply is a critical challenge of the 21st century and the solutions will require collaboration between scientists and engineers worldwide. This new journal aims to facilitate collaboration and spark innovation in energy research and development. Due to the importance of this topic to society and economic development the journal will give priority to quality research papers that are accessible to a broad readership and discuss sustainable, state-of-the art approaches to shaping the future of energy. This multidisciplinary journal will appeal to all researchers and professionals working in any area of energy in academia, industry or government, including scientists, engineers, consultants, policy-makers, government officials, economists and corporate organisations.