变压器故障诊断的多尺度时间自适应融合网络

IF 1.8 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
XuMing Liu, XiaoKun He, YongLin Li
{"title":"变压器故障诊断的多尺度时间自适应融合网络","authors":"XuMing Liu,&nbsp;XiaoKun He,&nbsp;YongLin Li","doi":"10.1002/eng2.70152","DOIUrl":null,"url":null,"abstract":"<p>Transformer fault diagnosis is crucial for the safe operation of power systems, enabling quick and accurate fault type identification. However, traditional methods struggle with extracting multi-scale temporal features and high-order feature representations, limiting their ability to handle complex dynamic data patterns. To address this, this paper proposes a multi-scale temporal adaptive fusion network (MSTAFN). The MSTAFN model first generates a time position vector through a temporal information encoding (TIE) module, capturing multi-scale temporal features. The adaptive high-order hybrid network (AHOHN) module then fuses multi-scale temporal data with transformer features using a hybrid attention mechanism, extracting temporal variation patterns. To enhance high-order feature representation, the high-order feature extraction (HOFE) module introduces nonlinear activation and higher-order operations to capture complex relationships between features. The adaptive feature reconstruction (AFR) module dynamically adjusts the feature fusion ratio, optimizing information integration. Finally, the multi-scale temporal fusion (MSTF) module balances the fusion of multi-scale temporal features and global dependencies, adapting to different tasks and data distributions. Extensive experiments on publicly available datasets demonstrate that the MSTAFN model outperforms comparison models across multiple evaluation metrics, proving its effectiveness and superiority in transformer fault diagnosis.</p>","PeriodicalId":72922,"journal":{"name":"Engineering reports : open access","volume":"7 5","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eng2.70152","citationCount":"0","resultStr":"{\"title\":\"A Multi-Scale Time Adaptive Fusion Network for Transformer Fault Diagnosis\",\"authors\":\"XuMing Liu,&nbsp;XiaoKun He,&nbsp;YongLin Li\",\"doi\":\"10.1002/eng2.70152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Transformer fault diagnosis is crucial for the safe operation of power systems, enabling quick and accurate fault type identification. However, traditional methods struggle with extracting multi-scale temporal features and high-order feature representations, limiting their ability to handle complex dynamic data patterns. To address this, this paper proposes a multi-scale temporal adaptive fusion network (MSTAFN). The MSTAFN model first generates a time position vector through a temporal information encoding (TIE) module, capturing multi-scale temporal features. The adaptive high-order hybrid network (AHOHN) module then fuses multi-scale temporal data with transformer features using a hybrid attention mechanism, extracting temporal variation patterns. To enhance high-order feature representation, the high-order feature extraction (HOFE) module introduces nonlinear activation and higher-order operations to capture complex relationships between features. The adaptive feature reconstruction (AFR) module dynamically adjusts the feature fusion ratio, optimizing information integration. Finally, the multi-scale temporal fusion (MSTF) module balances the fusion of multi-scale temporal features and global dependencies, adapting to different tasks and data distributions. Extensive experiments on publicly available datasets demonstrate that the MSTAFN model outperforms comparison models across multiple evaluation metrics, proving its effectiveness and superiority in transformer fault diagnosis.</p>\",\"PeriodicalId\":72922,\"journal\":{\"name\":\"Engineering reports : open access\",\"volume\":\"7 5\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eng2.70152\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering reports : open access\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eng2.70152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering reports : open access","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eng2.70152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

变压器故障诊断对电力系统的安全运行至关重要,能够快速、准确地识别故障类型。然而,传统的方法难以提取多尺度时间特征和高阶特征表示,限制了它们处理复杂动态数据模式的能力。针对这一问题,本文提出了一种多尺度时间自适应融合网络(MSTAFN)。MSTAFN模型首先通过时间信息编码(TIE)模块生成时间位置向量,捕获多尺度时间特征;自适应高阶混合网络(AHOHN)模块利用混合注意机制将多尺度时间数据与变压器特征融合,提取时间变化模式。为了增强高阶特征表示,高阶特征提取(HOFE)模块引入非线性激活和高阶操作来捕获特征之间的复杂关系。自适应特征重构(AFR)模块动态调整特征融合比例,优化信息集成。最后,多尺度时间融合(MSTF)模块平衡了多尺度时间特征和全局依赖关系的融合,以适应不同的任务和数据分布。在公开数据集上的大量实验表明,MSTAFN模型在多个评价指标上优于比较模型,证明了其在变压器故障诊断中的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Multi-Scale Time Adaptive Fusion Network for Transformer Fault Diagnosis

A Multi-Scale Time Adaptive Fusion Network for Transformer Fault Diagnosis

Transformer fault diagnosis is crucial for the safe operation of power systems, enabling quick and accurate fault type identification. However, traditional methods struggle with extracting multi-scale temporal features and high-order feature representations, limiting their ability to handle complex dynamic data patterns. To address this, this paper proposes a multi-scale temporal adaptive fusion network (MSTAFN). The MSTAFN model first generates a time position vector through a temporal information encoding (TIE) module, capturing multi-scale temporal features. The adaptive high-order hybrid network (AHOHN) module then fuses multi-scale temporal data with transformer features using a hybrid attention mechanism, extracting temporal variation patterns. To enhance high-order feature representation, the high-order feature extraction (HOFE) module introduces nonlinear activation and higher-order operations to capture complex relationships between features. The adaptive feature reconstruction (AFR) module dynamically adjusts the feature fusion ratio, optimizing information integration. Finally, the multi-scale temporal fusion (MSTF) module balances the fusion of multi-scale temporal features and global dependencies, adapting to different tasks and data distributions. Extensive experiments on publicly available datasets demonstrate that the MSTAFN model outperforms comparison models across multiple evaluation metrics, proving its effectiveness and superiority in transformer fault diagnosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信