用于焊缝缺陷检测的射线图像数据集

IF 2.6 3区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
Xuefeng Zhao, Juntao Wu, Baoxin Zhang, Haoyu Wen, Xiaopeng Wang, Yan Li, Xinghua Yu
{"title":"用于焊缝缺陷检测的射线图像数据集","authors":"Xuefeng Zhao,&nbsp;Juntao Wu,&nbsp;Baoxin Zhang,&nbsp;Haoyu Wen,&nbsp;Xiaopeng Wang,&nbsp;Yan Li,&nbsp;Xinghua Yu","doi":"10.1007/s10921-025-01186-w","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we introduce SWRD, a new public dataset containing over 3600 seam weld X-ray images, categorized into standard seam welds and T-joint seam welds. Each image is annotated with polygonal labels for specific defects, making the dataset suitable for various deep learning tasks such as classification, object detection, and instance segmentation. We also detail the defect formation mechanisms and their corresponding characteristics in X-ray images. To enhance the usability of the dataset for deep learning models, we applied several image processing techniques, including image adjustment, sliding window cropping, and preprocessing. Our experiments with the state-of-the-art YOLOv8 object detection models show promising results, with the YOLOv8m model achieving a mAP50 of 0.66 and a mAP50-95 of 0.49. Given that we used default training parameters and limited training epochs, we anticipate even better performance with further optimization. The complete dataset can be downloaded from: http://www.tz-ndt.com/#/download.</p></div>","PeriodicalId":655,"journal":{"name":"Journal of Nondestructive Evaluation","volume":"44 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SWRD: A Dataset of Radiographic Image of Seam Weld for Defect Detection\",\"authors\":\"Xuefeng Zhao,&nbsp;Juntao Wu,&nbsp;Baoxin Zhang,&nbsp;Haoyu Wen,&nbsp;Xiaopeng Wang,&nbsp;Yan Li,&nbsp;Xinghua Yu\",\"doi\":\"10.1007/s10921-025-01186-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we introduce SWRD, a new public dataset containing over 3600 seam weld X-ray images, categorized into standard seam welds and T-joint seam welds. Each image is annotated with polygonal labels for specific defects, making the dataset suitable for various deep learning tasks such as classification, object detection, and instance segmentation. We also detail the defect formation mechanisms and their corresponding characteristics in X-ray images. To enhance the usability of the dataset for deep learning models, we applied several image processing techniques, including image adjustment, sliding window cropping, and preprocessing. Our experiments with the state-of-the-art YOLOv8 object detection models show promising results, with the YOLOv8m model achieving a mAP50 of 0.66 and a mAP50-95 of 0.49. Given that we used default training parameters and limited training epochs, we anticipate even better performance with further optimization. The complete dataset can be downloaded from: http://www.tz-ndt.com/#/download.</p></div>\",\"PeriodicalId\":655,\"journal\":{\"name\":\"Journal of Nondestructive Evaluation\",\"volume\":\"44 2\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nondestructive Evaluation\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10921-025-01186-w\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nondestructive Evaluation","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10921-025-01186-w","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一个新的公共数据集SWRD,该数据集包含3600多张焊缝x射线图像,分为标准焊缝和t形接缝焊缝。每个图像都用特定缺陷的多边形标签进行注释,使数据集适合各种深度学习任务,如分类,对象检测和实例分割。我们还详细介绍了缺陷的形成机制及其在x射线图像中的相应特征。为了增强数据集对深度学习模型的可用性,我们应用了几种图像处理技术,包括图像调整、滑动窗口裁剪和预处理。我们使用最先进的YOLOv8目标检测模型进行的实验显示了很好的结果,其中YOLOv8模型的mAP50为0.66,mAP50-95为0.49。考虑到我们使用了默认的训练参数和有限的训练周期,我们期望通过进一步优化获得更好的性能。完整的数据集可从http://www.tz-ndt.com/#/download下载。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SWRD: A Dataset of Radiographic Image of Seam Weld for Defect Detection

In this paper, we introduce SWRD, a new public dataset containing over 3600 seam weld X-ray images, categorized into standard seam welds and T-joint seam welds. Each image is annotated with polygonal labels for specific defects, making the dataset suitable for various deep learning tasks such as classification, object detection, and instance segmentation. We also detail the defect formation mechanisms and their corresponding characteristics in X-ray images. To enhance the usability of the dataset for deep learning models, we applied several image processing techniques, including image adjustment, sliding window cropping, and preprocessing. Our experiments with the state-of-the-art YOLOv8 object detection models show promising results, with the YOLOv8m model achieving a mAP50 of 0.66 and a mAP50-95 of 0.49. Given that we used default training parameters and limited training epochs, we anticipate even better performance with further optimization. The complete dataset can be downloaded from: http://www.tz-ndt.com/#/download.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nondestructive Evaluation
Journal of Nondestructive Evaluation 工程技术-材料科学:表征与测试
CiteScore
4.90
自引率
7.10%
发文量
67
审稿时长
9 months
期刊介绍: Journal of Nondestructive Evaluation provides a forum for the broad range of scientific and engineering activities involved in developing a quantitative nondestructive evaluation (NDE) capability. This interdisciplinary journal publishes papers on the development of new equipment, analyses, and approaches to nondestructive measurements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信