山奈酚通过抑制结肠癌缺氧条件下HIF-1α/VEGF和Wnt/β-catenin的激活,促进凋亡,抑制增殖和迁移

IF 2.3 3区 农林科学 Q3 FOOD SCIENCE & TECHNOLOGY
Muhammad Haroon, Sun Chul Kang
{"title":"山奈酚通过抑制结肠癌缺氧条件下HIF-1α/VEGF和Wnt/β-catenin的激活,促进凋亡,抑制增殖和迁移","authors":"Muhammad Haroon,&nbsp;Sun Chul Kang","doi":"10.1186/s13765-025-00992-0","DOIUrl":null,"url":null,"abstract":"<div><p>A naturally occurring flavonoid compound found in several fruits and vegetables, kaempferol has garnered interest for its potential anticancer effects. The present investigation illustrates that kaempferol has multi-faceted anti-tumor effects in hypoxic colon cancer cells, HCT-15 (ATCC) and HCT-116 (KCLB) by inhibiting HIF-1α/VEGF angiogenesis, Wnt/β-catenin signaling, and epithelial-mesenchymal transition (EMT) progression. In conditions of hypoxia, kaempferol inhibited the stabilization of HIF-1α and its downstream targets (VEGF, ANG1, VEGFR2), while also obstructing Wnt/β-catenin activation by decreasing β-catenin and modifying the expression of pathway components (c-Myc, Cyclin-D1, LEF1, APC, and Axin-2). Kaempferol mitigated hypoxia-induced EMT by reinstating E-cadherin and inhibiting N-cadherin, Vimentin, and MMP-2/9, which corresponded with diminished migration in transwell and wound-healing assay. Mechanistic investigations demonstrated dual regulation of HIF-1α transcriptional activity (HRE luciferase) and MAPK signaling (p-ERK/p-38), in conjunction with ROS-induced DNA damage and intrinsic apoptosis (cleaved caspase-3/9 and Bcl-2 protein expression). The impact on angiogenesis, EMT, and survival pathways significantly diminished the proliferation, invasion, and metastatic capacity of hypoxic colon cancer cells which identifies kaempferol as an innovative multi-pathway inhibitor, thereby offering a strong justification for its advancement as a therapeutic agent for advanced colorectal cancer.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":467,"journal":{"name":"Applied Biological Chemistry","volume":"68 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://applbiolchem.springeropen.com/counter/pdf/10.1186/s13765-025-00992-0","citationCount":"0","resultStr":"{\"title\":\"Kaempferol promotes apoptosis and inhibits proliferation and migration by suppressing HIF-1α/VEGF and Wnt/β-catenin activation under hypoxic condition in colon cancer\",\"authors\":\"Muhammad Haroon,&nbsp;Sun Chul Kang\",\"doi\":\"10.1186/s13765-025-00992-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A naturally occurring flavonoid compound found in several fruits and vegetables, kaempferol has garnered interest for its potential anticancer effects. The present investigation illustrates that kaempferol has multi-faceted anti-tumor effects in hypoxic colon cancer cells, HCT-15 (ATCC) and HCT-116 (KCLB) by inhibiting HIF-1α/VEGF angiogenesis, Wnt/β-catenin signaling, and epithelial-mesenchymal transition (EMT) progression. In conditions of hypoxia, kaempferol inhibited the stabilization of HIF-1α and its downstream targets (VEGF, ANG1, VEGFR2), while also obstructing Wnt/β-catenin activation by decreasing β-catenin and modifying the expression of pathway components (c-Myc, Cyclin-D1, LEF1, APC, and Axin-2). Kaempferol mitigated hypoxia-induced EMT by reinstating E-cadherin and inhibiting N-cadherin, Vimentin, and MMP-2/9, which corresponded with diminished migration in transwell and wound-healing assay. Mechanistic investigations demonstrated dual regulation of HIF-1α transcriptional activity (HRE luciferase) and MAPK signaling (p-ERK/p-38), in conjunction with ROS-induced DNA damage and intrinsic apoptosis (cleaved caspase-3/9 and Bcl-2 protein expression). The impact on angiogenesis, EMT, and survival pathways significantly diminished the proliferation, invasion, and metastatic capacity of hypoxic colon cancer cells which identifies kaempferol as an innovative multi-pathway inhibitor, thereby offering a strong justification for its advancement as a therapeutic agent for advanced colorectal cancer.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":467,\"journal\":{\"name\":\"Applied Biological Chemistry\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://applbiolchem.springeropen.com/counter/pdf/10.1186/s13765-025-00992-0\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Biological Chemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13765-025-00992-0\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biological Chemistry","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1186/s13765-025-00992-0","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

山奈酚是一种天然存在的类黄酮化合物,存在于几种水果和蔬菜中,因其潜在的抗癌作用而引起了人们的兴趣。目前的研究表明,山奈酚通过抑制HIF-1α/VEGF血管生成、Wnt/β-catenin信号传导和上皮-间质转化(EMT)进展,对缺氧结肠癌细胞、HCT-15 (ATCC)和HCT-116 (KCLB)具有多方面的抗肿瘤作用。在缺氧条件下,山奈酚抑制HIF-1α及其下游靶点(VEGF、ANG1、VEGFR2)的稳定,同时通过降低β-catenin和修改通路组分(c-Myc、Cyclin-D1、LEF1、APC和Axin-2)的表达,阻碍Wnt/β-catenin的激活。山奈酚通过恢复E-cadherin和抑制N-cadherin、Vimentin和MMP-2/9来减轻缺氧诱导的EMT,这与transwell和伤口愈合实验中的迁移减少相对应。机制研究表明HIF-1α转录活性(HRE荧光素酶)和MAPK信号(p-ERK/p-38)的双重调控,以及ros诱导的DNA损伤和内在凋亡(裂解caspase-3/9和Bcl-2蛋白表达)。山奈酚对血管生成、EMT和存活途径的影响显著降低了缺氧结肠癌细胞的增殖、侵袭和转移能力,这表明山奈酚是一种创新的多途径抑制剂,从而为其作为晚期结直肠癌治疗剂的发展提供了强有力的理由。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kaempferol promotes apoptosis and inhibits proliferation and migration by suppressing HIF-1α/VEGF and Wnt/β-catenin activation under hypoxic condition in colon cancer

A naturally occurring flavonoid compound found in several fruits and vegetables, kaempferol has garnered interest for its potential anticancer effects. The present investigation illustrates that kaempferol has multi-faceted anti-tumor effects in hypoxic colon cancer cells, HCT-15 (ATCC) and HCT-116 (KCLB) by inhibiting HIF-1α/VEGF angiogenesis, Wnt/β-catenin signaling, and epithelial-mesenchymal transition (EMT) progression. In conditions of hypoxia, kaempferol inhibited the stabilization of HIF-1α and its downstream targets (VEGF, ANG1, VEGFR2), while also obstructing Wnt/β-catenin activation by decreasing β-catenin and modifying the expression of pathway components (c-Myc, Cyclin-D1, LEF1, APC, and Axin-2). Kaempferol mitigated hypoxia-induced EMT by reinstating E-cadherin and inhibiting N-cadherin, Vimentin, and MMP-2/9, which corresponded with diminished migration in transwell and wound-healing assay. Mechanistic investigations demonstrated dual regulation of HIF-1α transcriptional activity (HRE luciferase) and MAPK signaling (p-ERK/p-38), in conjunction with ROS-induced DNA damage and intrinsic apoptosis (cleaved caspase-3/9 and Bcl-2 protein expression). The impact on angiogenesis, EMT, and survival pathways significantly diminished the proliferation, invasion, and metastatic capacity of hypoxic colon cancer cells which identifies kaempferol as an innovative multi-pathway inhibitor, thereby offering a strong justification for its advancement as a therapeutic agent for advanced colorectal cancer.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Biological Chemistry
Applied Biological Chemistry Chemistry-Organic Chemistry
CiteScore
5.40
自引率
6.20%
发文量
70
审稿时长
20 weeks
期刊介绍: Applied Biological Chemistry aims to promote the interchange and dissemination of scientific data among researchers in the field of agricultural and biological chemistry. The journal covers biochemistry and molecular biology, medical and biomaterial science, food science, and environmental science as applied to multidisciplinary agriculture.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信