生长环对胶合层合木材湿致应力和损伤发展的影响

IF 3.1 2区 农林科学 Q1 FORESTRY
Taoyi Yu, Franziska Seeber, Ani Khaloian, Jan-Willem van de Kuilen
{"title":"生长环对胶合层合木材湿致应力和损伤发展的影响","authors":"Taoyi Yu,&nbsp;Franziska Seeber,&nbsp;Ani Khaloian,&nbsp;Jan-Willem van de Kuilen","doi":"10.1007/s00226-025-01647-5","DOIUrl":null,"url":null,"abstract":"<div><p>Humidity fluctuations are a leading cause of damage in wooden constructions. In the case of glulam products, the multitude of possible layups concerning pith locations, diverse material properties across wood species, and the high computational cost associated with multi-field analysis have constrained many research efforts to focus on one specific glulam layup, consequently limiting the generalizability of the findings. To address this challenge, Monte Carlo simulations were employed to assess the significance of various factors. Based on which, two levels of simplification are proposed. The first level reduces the multi-layer problem to a single-layer one by applying appropriate boundary conditions. It substantially reduces the simulation costs and consequently facilitates sophisticated damage analysis, revealing the varying damage pattern across different board types. The second level of simplification further reduces the problem to a single-element model, enabling an analytical estimation of moisture stress. This level of simplification elucidates how factors such as moisture difference, material rotational angle, and other material properties influence the moisture-induced stress. Most importantly, it facilitates a rapid estimation of the critical moisture fluctuation range and the preferred sawing location of boards for different wood species, which can provide guidance to the production of higher moisture resistant glulam.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"59 4","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00226-025-01647-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Growth-ring effect on moisture-induced stress and damage development in glued laminated timber\",\"authors\":\"Taoyi Yu,&nbsp;Franziska Seeber,&nbsp;Ani Khaloian,&nbsp;Jan-Willem van de Kuilen\",\"doi\":\"10.1007/s00226-025-01647-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Humidity fluctuations are a leading cause of damage in wooden constructions. In the case of glulam products, the multitude of possible layups concerning pith locations, diverse material properties across wood species, and the high computational cost associated with multi-field analysis have constrained many research efforts to focus on one specific glulam layup, consequently limiting the generalizability of the findings. To address this challenge, Monte Carlo simulations were employed to assess the significance of various factors. Based on which, two levels of simplification are proposed. The first level reduces the multi-layer problem to a single-layer one by applying appropriate boundary conditions. It substantially reduces the simulation costs and consequently facilitates sophisticated damage analysis, revealing the varying damage pattern across different board types. The second level of simplification further reduces the problem to a single-element model, enabling an analytical estimation of moisture stress. This level of simplification elucidates how factors such as moisture difference, material rotational angle, and other material properties influence the moisture-induced stress. Most importantly, it facilitates a rapid estimation of the critical moisture fluctuation range and the preferred sawing location of boards for different wood species, which can provide guidance to the production of higher moisture resistant glulam.</p></div>\",\"PeriodicalId\":810,\"journal\":{\"name\":\"Wood Science and Technology\",\"volume\":\"59 4\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00226-025-01647-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wood Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00226-025-01647-5\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wood Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s00226-025-01647-5","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

摘要

湿度波动是木制建筑损坏的主要原因。在胶合木产品的情况下,大量可能的铺层涉及到椎体位置,不同木材种类的不同材料特性,以及与多领域分析相关的高计算成本,限制了许多研究工作集中在一个特定的胶合木铺层上,从而限制了研究结果的普遍性。为了应对这一挑战,采用蒙特卡罗模拟来评估各种因素的重要性。在此基础上,提出了两个层次的简化。第一级通过应用适当的边界条件将多层问题简化为单层问题。它大大降低了模拟成本,从而促进了复杂的损伤分析,揭示了不同板类型的不同损伤模式。第二级简化进一步将问题简化为单元素模型,从而能够对水分应力进行分析估计。这种程度的简化阐明了诸如水分差异、材料旋转角度和其他材料特性等因素如何影响水分诱导应力。最重要的是,它有助于快速估计临界湿度波动范围和不同木材种类的板材的首选锯切位置,这可以为生产更高抗湿性的胶合板提供指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Growth-ring effect on moisture-induced stress and damage development in glued laminated timber

Humidity fluctuations are a leading cause of damage in wooden constructions. In the case of glulam products, the multitude of possible layups concerning pith locations, diverse material properties across wood species, and the high computational cost associated with multi-field analysis have constrained many research efforts to focus on one specific glulam layup, consequently limiting the generalizability of the findings. To address this challenge, Monte Carlo simulations were employed to assess the significance of various factors. Based on which, two levels of simplification are proposed. The first level reduces the multi-layer problem to a single-layer one by applying appropriate boundary conditions. It substantially reduces the simulation costs and consequently facilitates sophisticated damage analysis, revealing the varying damage pattern across different board types. The second level of simplification further reduces the problem to a single-element model, enabling an analytical estimation of moisture stress. This level of simplification elucidates how factors such as moisture difference, material rotational angle, and other material properties influence the moisture-induced stress. Most importantly, it facilitates a rapid estimation of the critical moisture fluctuation range and the preferred sawing location of boards for different wood species, which can provide guidance to the production of higher moisture resistant glulam.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wood Science and Technology
Wood Science and Technology 工程技术-材料科学:纸与木材
CiteScore
5.90
自引率
5.90%
发文量
75
审稿时长
3 months
期刊介绍: Wood Science and Technology publishes original scientific research results and review papers covering the entire field of wood material science, wood components and wood based products. Subjects are wood biology and wood quality, wood physics and physical technologies, wood chemistry and chemical technologies. Latest advances in areas such as cell wall and wood formation; structural and chemical composition of wood and wood composites and their property relations; physical, mechanical and chemical characterization and relevant methodological developments, and microbiological degradation of wood and wood based products are reported. Topics related to wood technology include machining, gluing, and finishing, composite technology, wood modification, wood mechanics, creep and rheology, and the conversion of wood into pulp and biorefinery products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信