通过光热转换和热能储存实现全天太阳能发电

IF 10.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zijian Liu, Chengzhi Chen, Junda Liu, Qi Sun, Bingchen Huo, Chunyu Du, Guangming Chen
{"title":"通过光热转换和热能储存实现全天太阳能发电","authors":"Zijian Liu,&nbsp;Chengzhi Chen,&nbsp;Junda Liu,&nbsp;Qi Sun,&nbsp;Bingchen Huo,&nbsp;Chunyu Du,&nbsp;Guangming Chen","doi":"10.1007/s11426-024-2336-1","DOIUrl":null,"url":null,"abstract":"<div><p>Thermoelectric materials hold promises for direct conversion of heat into electricity, making them viable power sources for electronic devices. However, their practical applications in diverse outdoor environment are hindered by limited and discontinuous electricity output. In this study, we propose an all-day solar power generator to achieve highly efficient and continuous electricity generation by harnessing the synergistic effects of photoelectric-thermoelectric conversion and latent thermal energy storage. The all-day solar power generator exhibits an average open-circuit voltage of 6.8 mV during daylight and a remaining 0.9 mV during nighttime. Importantly, the all-day solar power generator achieves dependable outdoor power supply for communication transmission in diverse environmental scenarios. Our research opens a new way for highly efficient and sustainable power generation.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":772,"journal":{"name":"Science China Chemistry","volume":"68 5","pages":"2035 - 2043"},"PeriodicalIF":10.4000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"All-day solar power generation enabled by photo/thermoelectric conversion and thermal energy storage\",\"authors\":\"Zijian Liu,&nbsp;Chengzhi Chen,&nbsp;Junda Liu,&nbsp;Qi Sun,&nbsp;Bingchen Huo,&nbsp;Chunyu Du,&nbsp;Guangming Chen\",\"doi\":\"10.1007/s11426-024-2336-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Thermoelectric materials hold promises for direct conversion of heat into electricity, making them viable power sources for electronic devices. However, their practical applications in diverse outdoor environment are hindered by limited and discontinuous electricity output. In this study, we propose an all-day solar power generator to achieve highly efficient and continuous electricity generation by harnessing the synergistic effects of photoelectric-thermoelectric conversion and latent thermal energy storage. The all-day solar power generator exhibits an average open-circuit voltage of 6.8 mV during daylight and a remaining 0.9 mV during nighttime. Importantly, the all-day solar power generator achieves dependable outdoor power supply for communication transmission in diverse environmental scenarios. Our research opens a new way for highly efficient and sustainable power generation.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":772,\"journal\":{\"name\":\"Science China Chemistry\",\"volume\":\"68 5\",\"pages\":\"2035 - 2043\"},\"PeriodicalIF\":10.4000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Chemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11426-024-2336-1\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Chemistry","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1007/s11426-024-2336-1","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

热电材料有望将热直接转化为电,使其成为电子设备的可行电源。然而,它们在各种户外环境中的实际应用受到有限和不连续的电力输出的阻碍。在这项研究中,我们提出了一种全天太阳能发电机,通过利用光电热电转换和潜热储能的协同效应来实现高效和连续发电。全天太阳能发电机白天平均开路电压为6.8 mV,夜间平均开路电压为0.9 mV。重要的是,全天候太阳能发电机实现了多种环境下可靠的室外通信传输电源。我们的研究为高效和可持续发电开辟了一条新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
All-day solar power generation enabled by photo/thermoelectric conversion and thermal energy storage

Thermoelectric materials hold promises for direct conversion of heat into electricity, making them viable power sources for electronic devices. However, their practical applications in diverse outdoor environment are hindered by limited and discontinuous electricity output. In this study, we propose an all-day solar power generator to achieve highly efficient and continuous electricity generation by harnessing the synergistic effects of photoelectric-thermoelectric conversion and latent thermal energy storage. The all-day solar power generator exhibits an average open-circuit voltage of 6.8 mV during daylight and a remaining 0.9 mV during nighttime. Importantly, the all-day solar power generator achieves dependable outdoor power supply for communication transmission in diverse environmental scenarios. Our research opens a new way for highly efficient and sustainable power generation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science China Chemistry
Science China Chemistry CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
14.40
自引率
7.30%
发文量
3787
审稿时长
2.2 months
期刊介绍: Science China Chemistry, co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China and published by Science China Press, publishes high-quality original research in both basic and applied chemistry. Indexed by Science Citation Index, it is a premier academic journal in the field. Categories of articles include: Highlights. Brief summaries and scholarly comments on recent research achievements in any field of chemistry. Perspectives. Concise reports on thelatest chemistry trends of interest to scientists worldwide, including discussions of research breakthroughs and interpretations of important science and funding policies. Reviews. In-depth summaries of representative results and achievements of the past 5–10 years in selected topics based on or closely related to the research expertise of the authors, providing a thorough assessment of the significance, current status, and future research directions of the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信