Lihong Tong, Li Fu, Bingni Wu, Changjie Xu, C. W. Lim
{"title":"堆积分数对颗粒材料动态蠕变变形的影响","authors":"Lihong Tong, Li Fu, Bingni Wu, Changjie Xu, C. W. Lim","doi":"10.1007/s11440-024-02459-w","DOIUrl":null,"url":null,"abstract":"<div><p>The rheological properties and creep dynamical behavior of the granular materials are significantly influenced by the packing fraction. The granular materials with a low packing fraction tend to transit from a solid-like to liquid-like state. The strain evolution and deformation characteristics of granular materials under different packing fractions are investigated by triaxial creep tests. The result indicates that a critical packing fraction exists for the granular system under specific external loading conditions, below which the system will be broken in a short period of time. Conversely, for packing fraction that exceeds the critical value, the granular material system exhibits logarithmic creep dynamics and eventually reaches a steady state. To characterize the creep behaviors of granular materials under dynamic loading, a state evolution model is introduced. The model is verified by combining the theoretical predictions with the experimental observations. Furthermore, parametric analysis is also implemented based on the introduced model. The results demonstrate that the model can capture the fundamental spatiotemporal evolution characteristics of granular materials which are subjected to dynamic loading conditions.</p></div>","PeriodicalId":49308,"journal":{"name":"Acta Geotechnica","volume":"20 5","pages":"2135 - 2144"},"PeriodicalIF":5.6000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Packing fraction effect on dynamic creep deformation of granular materials\",\"authors\":\"Lihong Tong, Li Fu, Bingni Wu, Changjie Xu, C. W. Lim\",\"doi\":\"10.1007/s11440-024-02459-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The rheological properties and creep dynamical behavior of the granular materials are significantly influenced by the packing fraction. The granular materials with a low packing fraction tend to transit from a solid-like to liquid-like state. The strain evolution and deformation characteristics of granular materials under different packing fractions are investigated by triaxial creep tests. The result indicates that a critical packing fraction exists for the granular system under specific external loading conditions, below which the system will be broken in a short period of time. Conversely, for packing fraction that exceeds the critical value, the granular material system exhibits logarithmic creep dynamics and eventually reaches a steady state. To characterize the creep behaviors of granular materials under dynamic loading, a state evolution model is introduced. The model is verified by combining the theoretical predictions with the experimental observations. Furthermore, parametric analysis is also implemented based on the introduced model. The results demonstrate that the model can capture the fundamental spatiotemporal evolution characteristics of granular materials which are subjected to dynamic loading conditions.</p></div>\",\"PeriodicalId\":49308,\"journal\":{\"name\":\"Acta Geotechnica\",\"volume\":\"20 5\",\"pages\":\"2135 - 2144\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Geotechnica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11440-024-02459-w\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geotechnica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11440-024-02459-w","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Packing fraction effect on dynamic creep deformation of granular materials
The rheological properties and creep dynamical behavior of the granular materials are significantly influenced by the packing fraction. The granular materials with a low packing fraction tend to transit from a solid-like to liquid-like state. The strain evolution and deformation characteristics of granular materials under different packing fractions are investigated by triaxial creep tests. The result indicates that a critical packing fraction exists for the granular system under specific external loading conditions, below which the system will be broken in a short period of time. Conversely, for packing fraction that exceeds the critical value, the granular material system exhibits logarithmic creep dynamics and eventually reaches a steady state. To characterize the creep behaviors of granular materials under dynamic loading, a state evolution model is introduced. The model is verified by combining the theoretical predictions with the experimental observations. Furthermore, parametric analysis is also implemented based on the introduced model. The results demonstrate that the model can capture the fundamental spatiotemporal evolution characteristics of granular materials which are subjected to dynamic loading conditions.
期刊介绍:
Acta Geotechnica is an international journal devoted to the publication and dissemination of basic and applied research in geoengineering – an interdisciplinary field dealing with geomaterials such as soils and rocks. Coverage emphasizes the interplay between geomechanical models and their engineering applications. The journal presents original research papers on fundamental concepts in geomechanics and their novel applications in geoengineering based on experimental, analytical and/or numerical approaches. The main purpose of the journal is to foster understanding of the fundamental mechanisms behind the phenomena and processes in geomaterials, from kilometer-scale problems as they occur in geoscience, and down to the nano-scale, with their potential impact on geoengineering. The journal strives to report and archive progress in the field in a timely manner, presenting research papers, review articles, short notes and letters to the editors.