{"title":"利用DEM研究基于状态参数的尺度规律对颗粒材料的适用性","authors":"Qiang Ma, Yan-Guo Zhou, Xiao-Tian Yang, Kyohei Ueda, Yun-Min Chen","doi":"10.1007/s10035-025-01522-x","DOIUrl":null,"url":null,"abstract":"<div><p>Granular materials are typically state-dependent materials, with their strength and deformation behaviors being dependent on density and stress state. Although some studies have adopted the state parameter-based scaling law for application in model tests, their applicability has not been systematically investigated. This paper employs Discrete Element Method (DEM) to conduct drained and undrained monotonic triaxial tests, and undrained cyclic triaxial tests, to investigate the validity of Rocha’s assumption and applicability of the state parameter-based scaling law. The simulation results indicate that the state parameter-based scaling law is suitable for physical modeling of geotechnical problems that prioritize peak or instability strength. The state parameter can roughly determine the liquefaction resistance, supporting its applicability to soil liquefaction problems. However, to ensure the accuracy of the model tests, the overburden stress ratio between the prototype and the model should be chosen within 5 to 10 times.</p></div>","PeriodicalId":49323,"journal":{"name":"Granular Matter","volume":"27 3","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating the applicability of the state parameter-based scaling law for granular material using DEM\",\"authors\":\"Qiang Ma, Yan-Guo Zhou, Xiao-Tian Yang, Kyohei Ueda, Yun-Min Chen\",\"doi\":\"10.1007/s10035-025-01522-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Granular materials are typically state-dependent materials, with their strength and deformation behaviors being dependent on density and stress state. Although some studies have adopted the state parameter-based scaling law for application in model tests, their applicability has not been systematically investigated. This paper employs Discrete Element Method (DEM) to conduct drained and undrained monotonic triaxial tests, and undrained cyclic triaxial tests, to investigate the validity of Rocha’s assumption and applicability of the state parameter-based scaling law. The simulation results indicate that the state parameter-based scaling law is suitable for physical modeling of geotechnical problems that prioritize peak or instability strength. The state parameter can roughly determine the liquefaction resistance, supporting its applicability to soil liquefaction problems. However, to ensure the accuracy of the model tests, the overburden stress ratio between the prototype and the model should be chosen within 5 to 10 times.</p></div>\",\"PeriodicalId\":49323,\"journal\":{\"name\":\"Granular Matter\",\"volume\":\"27 3\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Granular Matter\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10035-025-01522-x\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Granular Matter","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10035-025-01522-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Investigating the applicability of the state parameter-based scaling law for granular material using DEM
Granular materials are typically state-dependent materials, with their strength and deformation behaviors being dependent on density and stress state. Although some studies have adopted the state parameter-based scaling law for application in model tests, their applicability has not been systematically investigated. This paper employs Discrete Element Method (DEM) to conduct drained and undrained monotonic triaxial tests, and undrained cyclic triaxial tests, to investigate the validity of Rocha’s assumption and applicability of the state parameter-based scaling law. The simulation results indicate that the state parameter-based scaling law is suitable for physical modeling of geotechnical problems that prioritize peak or instability strength. The state parameter can roughly determine the liquefaction resistance, supporting its applicability to soil liquefaction problems. However, to ensure the accuracy of the model tests, the overburden stress ratio between the prototype and the model should be chosen within 5 to 10 times.
期刊介绍:
Although many phenomena observed in granular materials are still not yet fully understood, important contributions have been made to further our understanding using modern tools from statistical mechanics, micro-mechanics, and computational science.
These modern tools apply to disordered systems, phase transitions, instabilities or intermittent behavior and the performance of discrete particle simulations.
>> Until now, however, many of these results were only to be found scattered throughout the literature. Physicists are often unaware of the theories and results published by engineers or other fields - and vice versa.
The journal Granular Matter thus serves as an interdisciplinary platform of communication among researchers of various disciplines who are involved in the basic research on granular media. It helps to establish a common language and gather articles under one single roof that up to now have been spread over many journals in a variety of fields. Notwithstanding, highly applied or technical work is beyond the scope of this journal.