Sabatino Cuomo, Ettore Iannuzzi, Martin Mergili, Mariagiovanna Moscariello
{"title":"降雨引起的径流和泥石流:模拟Cervinara 1999级联流状的团块运动","authors":"Sabatino Cuomo, Ettore Iannuzzi, Martin Mergili, Mariagiovanna Moscariello","doi":"10.1007/s10064-025-04283-2","DOIUrl":null,"url":null,"abstract":"<div><p>Different types of mass flow-like movements are often triggered by rainfall in the same mountain basin in different seasons of the year, ranging from debris flows to hyper-concentrated flows and flash floods. Despite some similarities, such as large runout and high velocity, these natural hazards are different in their propagation mechanisms. Landslide mass and materials eroded along the path may be deposited along the channel(s) and subsequently remobilised; in other cases, runoff and debris mix inside the channels or nearby the protective structures. Such combined processes are typical along the northern Italian Alps but also in steep catchments in Liguria, Campania and Calabria regions. In this work, a two-phase mathematical framework is adopted to simulate the propagation of solid and water mixtures along a 3D terrain model. The mass and momentum conservation equations are solved by including the rheological behaviour models of the materials involved: frictional for soil, Newtonian for water. Selected scenarios are presented for a case study in Southern Italy with a discussion provided on how solid concentration of flow-like mass movements evolves in a mountain catchment. Numerical results show that at first, the runoff water accumulated within the natural channels and then a debris flow propagated rapidly down the slope meanwhile the concentration of solid material decreased due to the addition of runoff water and a hyperconcentrated flow reached the foothill area, later even more diluted and capable to move several kilometres far until it almost reached a railway line.</p></div>","PeriodicalId":500,"journal":{"name":"Bulletin of Engineering Geology and the Environment","volume":"84 6","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10064-025-04283-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Rainfall-induced runoff and debris flows: modelling the Cervinara 1999 cascade flow-like mass movements\",\"authors\":\"Sabatino Cuomo, Ettore Iannuzzi, Martin Mergili, Mariagiovanna Moscariello\",\"doi\":\"10.1007/s10064-025-04283-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Different types of mass flow-like movements are often triggered by rainfall in the same mountain basin in different seasons of the year, ranging from debris flows to hyper-concentrated flows and flash floods. Despite some similarities, such as large runout and high velocity, these natural hazards are different in their propagation mechanisms. Landslide mass and materials eroded along the path may be deposited along the channel(s) and subsequently remobilised; in other cases, runoff and debris mix inside the channels or nearby the protective structures. Such combined processes are typical along the northern Italian Alps but also in steep catchments in Liguria, Campania and Calabria regions. In this work, a two-phase mathematical framework is adopted to simulate the propagation of solid and water mixtures along a 3D terrain model. The mass and momentum conservation equations are solved by including the rheological behaviour models of the materials involved: frictional for soil, Newtonian for water. Selected scenarios are presented for a case study in Southern Italy with a discussion provided on how solid concentration of flow-like mass movements evolves in a mountain catchment. Numerical results show that at first, the runoff water accumulated within the natural channels and then a debris flow propagated rapidly down the slope meanwhile the concentration of solid material decreased due to the addition of runoff water and a hyperconcentrated flow reached the foothill area, later even more diluted and capable to move several kilometres far until it almost reached a railway line.</p></div>\",\"PeriodicalId\":500,\"journal\":{\"name\":\"Bulletin of Engineering Geology and the Environment\",\"volume\":\"84 6\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10064-025-04283-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Engineering Geology and the Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10064-025-04283-2\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Engineering Geology and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10064-025-04283-2","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Rainfall-induced runoff and debris flows: modelling the Cervinara 1999 cascade flow-like mass movements
Different types of mass flow-like movements are often triggered by rainfall in the same mountain basin in different seasons of the year, ranging from debris flows to hyper-concentrated flows and flash floods. Despite some similarities, such as large runout and high velocity, these natural hazards are different in their propagation mechanisms. Landslide mass and materials eroded along the path may be deposited along the channel(s) and subsequently remobilised; in other cases, runoff and debris mix inside the channels or nearby the protective structures. Such combined processes are typical along the northern Italian Alps but also in steep catchments in Liguria, Campania and Calabria regions. In this work, a two-phase mathematical framework is adopted to simulate the propagation of solid and water mixtures along a 3D terrain model. The mass and momentum conservation equations are solved by including the rheological behaviour models of the materials involved: frictional for soil, Newtonian for water. Selected scenarios are presented for a case study in Southern Italy with a discussion provided on how solid concentration of flow-like mass movements evolves in a mountain catchment. Numerical results show that at first, the runoff water accumulated within the natural channels and then a debris flow propagated rapidly down the slope meanwhile the concentration of solid material decreased due to the addition of runoff water and a hyperconcentrated flow reached the foothill area, later even more diluted and capable to move several kilometres far until it almost reached a railway line.
期刊介绍:
Engineering geology is defined in the statutes of the IAEG as the science devoted to the investigation, study and solution of engineering and environmental problems which may arise as the result of the interaction between geology and the works or activities of man, as well as of the prediction of and development of measures for the prevention or remediation of geological hazards. Engineering geology embraces:
• the applications/implications of the geomorphology, structural geology, and hydrogeological conditions of geological formations;
• the characterisation of the mineralogical, physico-geomechanical, chemical and hydraulic properties of all earth materials involved in construction, resource recovery and environmental change;
• the assessment of the mechanical and hydrological behaviour of soil and rock masses;
• the prediction of changes to the above properties with time;
• the determination of the parameters to be considered in the stability analysis of engineering works and earth masses.