Alisha L. Davidson, Ramandeep S. Dosanjh, Stewart F. Parker and David Lennon
{"title":"共投二氧化碳对费托催化制烯烃的影响:非弹性中子散射研究","authors":"Alisha L. Davidson, Ramandeep S. Dosanjh, Stewart F. Parker and David Lennon","doi":"10.1039/D5SU00042D","DOIUrl":null,"url":null,"abstract":"<p >The addition of CO<small><sub>2</sub></small> to a syngas feed stream in Fischer–Tropsch to Olefin (FTO) catalysis is investigated by means of inelastic neutron scattering (INS) spectroscopy using ambient pressure CO hydrogenation at 623 K as a test reaction. The principal objective being to explore how the presence of CO<small><sub>2</sub></small> affects the nature of a hydrocarbonaceous overlayer that forms during the conditioning phase of the catalytic process. The candidate FTO catalyst examined is Fe-based and doubly promoted with sodium (2000 ppm) and sulfur (100 ppm). Temperature-programmed oxidation profiles recorded after 3, 6, 12 and 24 h time-on-stream (T-o-S) reveal progressive carbon retention by the catalyst mainly in the form of amorphous carbon. The INS spectrum as a function of T-o-S confirms the presence of a hydrocarbonaceous overlayer, but with a much higher hydrogen concentration than previously observed for Fe-based FTO catalysts operating solely with a syngas feed. These preliminary results are considered with respect to a possible role for CO<small><sub>2</sub></small> perturbing the equilibrium between iron carbides and oxides.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 5","pages":" 2246-2254"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/su/d5su00042d?page=search","citationCount":"0","resultStr":"{\"title\":\"The impact of co-feeding carbon dioxide in Fischer–Tropsch-to-olefin catalysis: an inelastic neutron scattering study\",\"authors\":\"Alisha L. Davidson, Ramandeep S. Dosanjh, Stewart F. Parker and David Lennon\",\"doi\":\"10.1039/D5SU00042D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The addition of CO<small><sub>2</sub></small> to a syngas feed stream in Fischer–Tropsch to Olefin (FTO) catalysis is investigated by means of inelastic neutron scattering (INS) spectroscopy using ambient pressure CO hydrogenation at 623 K as a test reaction. The principal objective being to explore how the presence of CO<small><sub>2</sub></small> affects the nature of a hydrocarbonaceous overlayer that forms during the conditioning phase of the catalytic process. The candidate FTO catalyst examined is Fe-based and doubly promoted with sodium (2000 ppm) and sulfur (100 ppm). Temperature-programmed oxidation profiles recorded after 3, 6, 12 and 24 h time-on-stream (T-o-S) reveal progressive carbon retention by the catalyst mainly in the form of amorphous carbon. The INS spectrum as a function of T-o-S confirms the presence of a hydrocarbonaceous overlayer, but with a much higher hydrogen concentration than previously observed for Fe-based FTO catalysts operating solely with a syngas feed. These preliminary results are considered with respect to a possible role for CO<small><sub>2</sub></small> perturbing the equilibrium between iron carbides and oxides.</p>\",\"PeriodicalId\":74745,\"journal\":{\"name\":\"RSC sustainability\",\"volume\":\" 5\",\"pages\":\" 2246-2254\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/su/d5su00042d?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC sustainability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/su/d5su00042d\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC sustainability","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/su/d5su00042d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The impact of co-feeding carbon dioxide in Fischer–Tropsch-to-olefin catalysis: an inelastic neutron scattering study
The addition of CO2 to a syngas feed stream in Fischer–Tropsch to Olefin (FTO) catalysis is investigated by means of inelastic neutron scattering (INS) spectroscopy using ambient pressure CO hydrogenation at 623 K as a test reaction. The principal objective being to explore how the presence of CO2 affects the nature of a hydrocarbonaceous overlayer that forms during the conditioning phase of the catalytic process. The candidate FTO catalyst examined is Fe-based and doubly promoted with sodium (2000 ppm) and sulfur (100 ppm). Temperature-programmed oxidation profiles recorded after 3, 6, 12 and 24 h time-on-stream (T-o-S) reveal progressive carbon retention by the catalyst mainly in the form of amorphous carbon. The INS spectrum as a function of T-o-S confirms the presence of a hydrocarbonaceous overlayer, but with a much higher hydrogen concentration than previously observed for Fe-based FTO catalysts operating solely with a syngas feed. These preliminary results are considered with respect to a possible role for CO2 perturbing the equilibrium between iron carbides and oxides.