Martí Berenguer, Javier Mas, Masataka Matsumoto, Keiju Murata, Alfonso V. Ramallo
{"title":"螺旋磁场对AdS/CFT中手性对称性的破坏与恢复","authors":"Martí Berenguer, Javier Mas, Masataka Matsumoto, Keiju Murata, Alfonso V. Ramallo","doi":"10.1007/JHEP05(2025)048","DOIUrl":null,"url":null,"abstract":"<p>We study the effects of helical magnetic fields on chiral symmetry breaking within the AdS/QCD framework using the D3/D7-brane model. By analyzing the brane embeddings, we obtain three types of massless solutions, corresponding to three phases with different behavior in the dual field theory. From the study of quark condensates, free energy, and electric currents, we find that helical magnetic fields can counteract uniform-field-induced symmetry breaking, driving the system towards symmetry restoration. We also find an effect analog to the chiral magnetic effect whereby the current is parallel to the magnetic field. We further study the massive case, and find that the helical configuration is less effective in erasing the first order phase transition that is present in the case of a constant magnetic field.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 5","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP05(2025)048.pdf","citationCount":"0","resultStr":"{\"title\":\"Chiral symmetry breaking and restoration by helical magnetic fields in AdS/CFT\",\"authors\":\"Martí Berenguer, Javier Mas, Masataka Matsumoto, Keiju Murata, Alfonso V. Ramallo\",\"doi\":\"10.1007/JHEP05(2025)048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the effects of helical magnetic fields on chiral symmetry breaking within the AdS/QCD framework using the D3/D7-brane model. By analyzing the brane embeddings, we obtain three types of massless solutions, corresponding to three phases with different behavior in the dual field theory. From the study of quark condensates, free energy, and electric currents, we find that helical magnetic fields can counteract uniform-field-induced symmetry breaking, driving the system towards symmetry restoration. We also find an effect analog to the chiral magnetic effect whereby the current is parallel to the magnetic field. We further study the massive case, and find that the helical configuration is less effective in erasing the first order phase transition that is present in the case of a constant magnetic field.</p>\",\"PeriodicalId\":635,\"journal\":{\"name\":\"Journal of High Energy Physics\",\"volume\":\"2025 5\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/JHEP05(2025)048.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/JHEP05(2025)048\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP05(2025)048","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Chiral symmetry breaking and restoration by helical magnetic fields in AdS/CFT
We study the effects of helical magnetic fields on chiral symmetry breaking within the AdS/QCD framework using the D3/D7-brane model. By analyzing the brane embeddings, we obtain three types of massless solutions, corresponding to three phases with different behavior in the dual field theory. From the study of quark condensates, free energy, and electric currents, we find that helical magnetic fields can counteract uniform-field-induced symmetry breaking, driving the system towards symmetry restoration. We also find an effect analog to the chiral magnetic effect whereby the current is parallel to the magnetic field. We further study the massive case, and find that the helical configuration is less effective in erasing the first order phase transition that is present in the case of a constant magnetic field.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).