丝素蛋白多孔支架的可控制备及其对细胞行为的调控

IF 6.1 3区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS
Menglin Xiao, Liangyan Sun, Hao Fu, Wenhua Yang, Jinrong Yao, Zhengzhong Shao, Shengjie Ling, Bingjiao Zhao and Xin Chen
{"title":"丝素蛋白多孔支架的可控制备及其对细胞行为的调控","authors":"Menglin Xiao, Liangyan Sun, Hao Fu, Wenhua Yang, Jinrong Yao, Zhengzhong Shao, Shengjie Ling, Bingjiao Zhao and Xin Chen","doi":"10.1039/D5TB00508F","DOIUrl":null,"url":null,"abstract":"<p >With the continuous advancement of biomechanics and cell biology, the importance of substrate materials in regulating cell growth, movement, differentiation, apoptosis, gene expression, adhesion, and signal transduction has been increasingly recognized. Silk fibroin (SF) porous scaffolds, owing to their excellent biocompatibility, controllable biodegradability, and ability to effectively simulate the <em>in vivo</em> microenvironment, have been demonstrated to possess broad application prospects in the field of tissue engineering. However, traditional preparation methods for SF porous scaffolds have been found to exhibit poor control over pore size and mechanical properties, and a trade-off between pore size and mechanical performance has often been observed, which has limited their practical application to some extent. A method termed “alcohol addition–freezing method” for preparing SF porous scaffolds was previously developed by our research group, and herein, this method was further extended by adjusting three parameters: the concentration of SF, the concentration of the denaturant <em>n</em>-butanol, and the freezing temperature. Through this approach, controllable preparation of SF porous scaffolds was successfully achieved, resulting in a series of scaffolds with varying pore sizes and compressive moduli. Notably, unidirectional regulation of scaffold pore size and mechanical properties was accomplished, meaning that scaffolds with the same pore size could be designed to exhibit different mechanical properties, and <em>vice versa</em>. Based on this, macrophages, fibroblasts, and bone marrow mesenchymal stem cells (BMSCs), which are frequently involved in tissue engineering scaffold research, were selected to investigate the effects of scaffold pore size and stiffness (represented by compressive modulus) on their biological behaviors. <em>In vitro</em> cell experiments demonstrated that these cells exhibit different biological response in those SF scaffolds with different pore size and stiffness. In summary, the preparation method for SF scaffolds employed in this study has not only addressed the limitations of traditional methods in unidirectionally regulating the physical properties of SF porous scaffolds but has also provided a novel strategy and approach for controlling the microenvironment of cell growth in regenerative medicine, which is considered to hold significant scientific and practical value.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 18","pages":" 5453-5465"},"PeriodicalIF":6.1000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Controllable fabrication of silk fibroin porous scaffolds and their regulation on cellular behaviours†\",\"authors\":\"Menglin Xiao, Liangyan Sun, Hao Fu, Wenhua Yang, Jinrong Yao, Zhengzhong Shao, Shengjie Ling, Bingjiao Zhao and Xin Chen\",\"doi\":\"10.1039/D5TB00508F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >With the continuous advancement of biomechanics and cell biology, the importance of substrate materials in regulating cell growth, movement, differentiation, apoptosis, gene expression, adhesion, and signal transduction has been increasingly recognized. Silk fibroin (SF) porous scaffolds, owing to their excellent biocompatibility, controllable biodegradability, and ability to effectively simulate the <em>in vivo</em> microenvironment, have been demonstrated to possess broad application prospects in the field of tissue engineering. However, traditional preparation methods for SF porous scaffolds have been found to exhibit poor control over pore size and mechanical properties, and a trade-off between pore size and mechanical performance has often been observed, which has limited their practical application to some extent. A method termed “alcohol addition–freezing method” for preparing SF porous scaffolds was previously developed by our research group, and herein, this method was further extended by adjusting three parameters: the concentration of SF, the concentration of the denaturant <em>n</em>-butanol, and the freezing temperature. Through this approach, controllable preparation of SF porous scaffolds was successfully achieved, resulting in a series of scaffolds with varying pore sizes and compressive moduli. Notably, unidirectional regulation of scaffold pore size and mechanical properties was accomplished, meaning that scaffolds with the same pore size could be designed to exhibit different mechanical properties, and <em>vice versa</em>. Based on this, macrophages, fibroblasts, and bone marrow mesenchymal stem cells (BMSCs), which are frequently involved in tissue engineering scaffold research, were selected to investigate the effects of scaffold pore size and stiffness (represented by compressive modulus) on their biological behaviors. <em>In vitro</em> cell experiments demonstrated that these cells exhibit different biological response in those SF scaffolds with different pore size and stiffness. In summary, the preparation method for SF scaffolds employed in this study has not only addressed the limitations of traditional methods in unidirectionally regulating the physical properties of SF porous scaffolds but has also provided a novel strategy and approach for controlling the microenvironment of cell growth in regenerative medicine, which is considered to hold significant scientific and practical value.</p>\",\"PeriodicalId\":83,\"journal\":{\"name\":\"Journal of Materials Chemistry B\",\"volume\":\" 18\",\"pages\":\" 5453-5465\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d5tb00508f\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d5tb00508f","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

随着生物力学和细胞生物学的不断进步,底物材料在调节细胞生长、运动、分化、凋亡、基因表达、粘附和信号转导等方面的重要性日益被认识。丝素蛋白多孔支架由于其优异的生物相容性、可控性和有效模拟体内微环境的能力,在组织工程领域具有广阔的应用前景。然而,传统的多孔支架制备方法对孔径和力学性能的控制较差,经常出现孔径和力学性能之间的权衡,这在一定程度上限制了其实际应用。本课题组之前开发了一种制备SF多孔支架的“醇加-冷冻法”,并通过调整SF浓度、变性剂正丁醇浓度、冷冻温度三个参数,对该方法进行了进一步扩展。通过这种方法,成功地实现了SF多孔支架的可控制备,得到了一系列孔径大小和压缩模量不同的支架。值得注意的是,实现了支架孔径和力学性能的单向调节,这意味着相同孔径的支架可以设计出不同的力学性能,反之亦然。在此基础上,选择组织工程支架研究中经常涉及的巨噬细胞、成纤维细胞和骨髓间充质干细胞(BMSCs),研究支架孔径和刚度(以压缩模量为代表)对其生物学行为的影响。体外细胞实验表明,这些细胞在不同孔径和刚度的SF支架中表现出不同的生物学反应。综上所述,本研究采用的SF支架制备方法不仅解决了传统方法单向调节SF多孔支架物理性能的局限性,而且为再生医学中控制细胞生长微环境提供了一种新的策略和途径,具有重要的科学和实用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Controllable fabrication of silk fibroin porous scaffolds and their regulation on cellular behaviours†

With the continuous advancement of biomechanics and cell biology, the importance of substrate materials in regulating cell growth, movement, differentiation, apoptosis, gene expression, adhesion, and signal transduction has been increasingly recognized. Silk fibroin (SF) porous scaffolds, owing to their excellent biocompatibility, controllable biodegradability, and ability to effectively simulate the in vivo microenvironment, have been demonstrated to possess broad application prospects in the field of tissue engineering. However, traditional preparation methods for SF porous scaffolds have been found to exhibit poor control over pore size and mechanical properties, and a trade-off between pore size and mechanical performance has often been observed, which has limited their practical application to some extent. A method termed “alcohol addition–freezing method” for preparing SF porous scaffolds was previously developed by our research group, and herein, this method was further extended by adjusting three parameters: the concentration of SF, the concentration of the denaturant n-butanol, and the freezing temperature. Through this approach, controllable preparation of SF porous scaffolds was successfully achieved, resulting in a series of scaffolds with varying pore sizes and compressive moduli. Notably, unidirectional regulation of scaffold pore size and mechanical properties was accomplished, meaning that scaffolds with the same pore size could be designed to exhibit different mechanical properties, and vice versa. Based on this, macrophages, fibroblasts, and bone marrow mesenchymal stem cells (BMSCs), which are frequently involved in tissue engineering scaffold research, were selected to investigate the effects of scaffold pore size and stiffness (represented by compressive modulus) on their biological behaviors. In vitro cell experiments demonstrated that these cells exhibit different biological response in those SF scaffolds with different pore size and stiffness. In summary, the preparation method for SF scaffolds employed in this study has not only addressed the limitations of traditional methods in unidirectionally regulating the physical properties of SF porous scaffolds but has also provided a novel strategy and approach for controlling the microenvironment of cell growth in regenerative medicine, which is considered to hold significant scientific and practical value.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry B
Journal of Materials Chemistry B MATERIALS SCIENCE, BIOMATERIALS-
CiteScore
11.50
自引率
4.30%
发文量
866
期刊介绍: Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive: Antifouling coatings Biocompatible materials Bioelectronics Bioimaging Biomimetics Biomineralisation Bionics Biosensors Diagnostics Drug delivery Gene delivery Immunobiology Nanomedicine Regenerative medicine & Tissue engineering Scaffolds Soft robotics Stem cells Therapeutic devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信