Anil Pareek , Sanjesh Kumar , Devesh U. Kapoor , Bhupendra G Prajapati
{"title":"超顺磁纳米凝胶的进展:诊断和靶向给药的双重作用平台","authors":"Anil Pareek , Sanjesh Kumar , Devesh U. Kapoor , Bhupendra G Prajapati","doi":"10.1016/j.ijpharm.2025.125683","DOIUrl":null,"url":null,"abstract":"<div><div>Superparamagnetic nanogels represent a groundbreaking advancement in nanotechnology, combining the unique properties of superparamagnetic materials with the versatility of nanogels to create multifunctional platforms for biomedical applications. These innovative constructs play a dual role in diagnosis and targeted drug delivery, addressing critical challenges in modern healthcare. This review paper explores the synthesis, characterization, and applications of superparamagnetic nanogels, providing a comprehensive overview of their potential impact in biomedicine. The synthesis section outlines various materials, fabrication techniques, and surface functionalization methods used to enhance their functionality and biocompatibility. Characterization techniques are discussed, focusing on their structural, magnetic, and biological properties. In diagnostic applications, superparamagnetic nanogels excel as contrast agents for magnetic resonance imaging, biosensors, and tools for real-time disease monitoring. Their superior sensitivity and specificity offer unprecedented opportunities for early disease detection and personalized treatment. In drug delivery, these nanogels demonstrate remarkable efficiency in encapsulating therapeutic agents and enabling controlled release. Magnetic guidance enhances targeting precision, minimizing off-target effects and improving therapeutic outcomes, particularly in cancer therapy. The dual-role capability of these nanogels underscores their potential as transformative tools in precision medicine. This review emphasizes recent advancements, highlighting the challenges and future perspectives in optimizing superparamagnetic nanogels for clinical translation. By bridging the gap between innovative design and practical application, this work aims to inspire further research and development in this dynamic field.</div></div>","PeriodicalId":14187,"journal":{"name":"International Journal of Pharmaceutics","volume":"677 ","pages":"Article 125683"},"PeriodicalIF":5.3000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancements in superparamagnetic nanogels: A dual-role platform for diagnosis and targeted drug delivery\",\"authors\":\"Anil Pareek , Sanjesh Kumar , Devesh U. Kapoor , Bhupendra G Prajapati\",\"doi\":\"10.1016/j.ijpharm.2025.125683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Superparamagnetic nanogels represent a groundbreaking advancement in nanotechnology, combining the unique properties of superparamagnetic materials with the versatility of nanogels to create multifunctional platforms for biomedical applications. These innovative constructs play a dual role in diagnosis and targeted drug delivery, addressing critical challenges in modern healthcare. This review paper explores the synthesis, characterization, and applications of superparamagnetic nanogels, providing a comprehensive overview of their potential impact in biomedicine. The synthesis section outlines various materials, fabrication techniques, and surface functionalization methods used to enhance their functionality and biocompatibility. Characterization techniques are discussed, focusing on their structural, magnetic, and biological properties. In diagnostic applications, superparamagnetic nanogels excel as contrast agents for magnetic resonance imaging, biosensors, and tools for real-time disease monitoring. Their superior sensitivity and specificity offer unprecedented opportunities for early disease detection and personalized treatment. In drug delivery, these nanogels demonstrate remarkable efficiency in encapsulating therapeutic agents and enabling controlled release. Magnetic guidance enhances targeting precision, minimizing off-target effects and improving therapeutic outcomes, particularly in cancer therapy. The dual-role capability of these nanogels underscores their potential as transformative tools in precision medicine. This review emphasizes recent advancements, highlighting the challenges and future perspectives in optimizing superparamagnetic nanogels for clinical translation. By bridging the gap between innovative design and practical application, this work aims to inspire further research and development in this dynamic field.</div></div>\",\"PeriodicalId\":14187,\"journal\":{\"name\":\"International Journal of Pharmaceutics\",\"volume\":\"677 \",\"pages\":\"Article 125683\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Pharmaceutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378517325005204\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378517325005204","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Advancements in superparamagnetic nanogels: A dual-role platform for diagnosis and targeted drug delivery
Superparamagnetic nanogels represent a groundbreaking advancement in nanotechnology, combining the unique properties of superparamagnetic materials with the versatility of nanogels to create multifunctional platforms for biomedical applications. These innovative constructs play a dual role in diagnosis and targeted drug delivery, addressing critical challenges in modern healthcare. This review paper explores the synthesis, characterization, and applications of superparamagnetic nanogels, providing a comprehensive overview of their potential impact in biomedicine. The synthesis section outlines various materials, fabrication techniques, and surface functionalization methods used to enhance their functionality and biocompatibility. Characterization techniques are discussed, focusing on their structural, magnetic, and biological properties. In diagnostic applications, superparamagnetic nanogels excel as contrast agents for magnetic resonance imaging, biosensors, and tools for real-time disease monitoring. Their superior sensitivity and specificity offer unprecedented opportunities for early disease detection and personalized treatment. In drug delivery, these nanogels demonstrate remarkable efficiency in encapsulating therapeutic agents and enabling controlled release. Magnetic guidance enhances targeting precision, minimizing off-target effects and improving therapeutic outcomes, particularly in cancer therapy. The dual-role capability of these nanogels underscores their potential as transformative tools in precision medicine. This review emphasizes recent advancements, highlighting the challenges and future perspectives in optimizing superparamagnetic nanogels for clinical translation. By bridging the gap between innovative design and practical application, this work aims to inspire further research and development in this dynamic field.
期刊介绍:
The International Journal of Pharmaceutics is the third most cited journal in the "Pharmacy & Pharmacology" category out of 366 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.