{"title":"Riesz容量的Hausdorff测度和衰减率","authors":"Qiuling Fan, Richard S. Laugesen","doi":"10.1016/j.jmaa.2025.129625","DOIUrl":null,"url":null,"abstract":"<div><div>The decay rate of Riesz capacity as the exponent increases to the dimension of the set is shown to yield Hausdorff measure. The result applies to strongly rectifiable sets, and so in particular to submanifolds of Euclidean space. For strictly self-similar fractals, a one-sided decay estimate is found. Along the way, a purely measure theoretic proof is given for subadditivity of the reciprocal of Riesz energy.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"550 2","pages":"Article 129625"},"PeriodicalIF":1.2000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hausdorff measure and decay rate of Riesz capacity\",\"authors\":\"Qiuling Fan, Richard S. Laugesen\",\"doi\":\"10.1016/j.jmaa.2025.129625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The decay rate of Riesz capacity as the exponent increases to the dimension of the set is shown to yield Hausdorff measure. The result applies to strongly rectifiable sets, and so in particular to submanifolds of Euclidean space. For strictly self-similar fractals, a one-sided decay estimate is found. Along the way, a purely measure theoretic proof is given for subadditivity of the reciprocal of Riesz energy.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"550 2\",\"pages\":\"Article 129625\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25004068\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25004068","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Hausdorff measure and decay rate of Riesz capacity
The decay rate of Riesz capacity as the exponent increases to the dimension of the set is shown to yield Hausdorff measure. The result applies to strongly rectifiable sets, and so in particular to submanifolds of Euclidean space. For strictly self-similar fractals, a one-sided decay estimate is found. Along the way, a purely measure theoretic proof is given for subadditivity of the reciprocal of Riesz energy.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.