{"title":"具有最大占位点的球形电极上循环伏安图的峰值电流密度公式","authors":"Shijie Zhang , Tong-Yi Zhang , Sheng Sun","doi":"10.1016/j.ssi.2025.116879","DOIUrl":null,"url":null,"abstract":"<div><div>Cyclic Voltammetry (CV) is essential for elucidating electron and ion transfer kinetics as well as diffusion properties at electrode interfaces. The peak currents in CV, measured at various scan rates, are influenced by ion transport rates, necessitating theoretical formulations for interpretation. Classical models assume simultaneous diffusion of oxidized and reduced species at equal rates within the electrolyte, which limits their applicability to ion-battery systems. In batteries, ion diffusion in electrodes is the slowest kinetic step, and electrode sites are limited, significantly impacting CV peak currents. This study introduces a novel framework to derive the formula for CV peak currents in battery electrodes, considering the finite number of occupation sites. The derived formula markedly differs from classical models and demonstrates robust agreement with finite difference solutions of relevant partial differential equations, enabling precise determination of ion kinetics in spherical electrodes within ion-battery systems.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"426 ","pages":"Article 116879"},"PeriodicalIF":3.0000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The formula for peak current density of cyclic voltammogram on spherical electrodes with maximum occupation sites\",\"authors\":\"Shijie Zhang , Tong-Yi Zhang , Sheng Sun\",\"doi\":\"10.1016/j.ssi.2025.116879\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cyclic Voltammetry (CV) is essential for elucidating electron and ion transfer kinetics as well as diffusion properties at electrode interfaces. The peak currents in CV, measured at various scan rates, are influenced by ion transport rates, necessitating theoretical formulations for interpretation. Classical models assume simultaneous diffusion of oxidized and reduced species at equal rates within the electrolyte, which limits their applicability to ion-battery systems. In batteries, ion diffusion in electrodes is the slowest kinetic step, and electrode sites are limited, significantly impacting CV peak currents. This study introduces a novel framework to derive the formula for CV peak currents in battery electrodes, considering the finite number of occupation sites. The derived formula markedly differs from classical models and demonstrates robust agreement with finite difference solutions of relevant partial differential equations, enabling precise determination of ion kinetics in spherical electrodes within ion-battery systems.</div></div>\",\"PeriodicalId\":431,\"journal\":{\"name\":\"Solid State Ionics\",\"volume\":\"426 \",\"pages\":\"Article 116879\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid State Ionics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167273825000980\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273825000980","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
The formula for peak current density of cyclic voltammogram on spherical electrodes with maximum occupation sites
Cyclic Voltammetry (CV) is essential for elucidating electron and ion transfer kinetics as well as diffusion properties at electrode interfaces. The peak currents in CV, measured at various scan rates, are influenced by ion transport rates, necessitating theoretical formulations for interpretation. Classical models assume simultaneous diffusion of oxidized and reduced species at equal rates within the electrolyte, which limits their applicability to ion-battery systems. In batteries, ion diffusion in electrodes is the slowest kinetic step, and electrode sites are limited, significantly impacting CV peak currents. This study introduces a novel framework to derive the formula for CV peak currents in battery electrodes, considering the finite number of occupation sites. The derived formula markedly differs from classical models and demonstrates robust agreement with finite difference solutions of relevant partial differential equations, enabling precise determination of ion kinetics in spherical electrodes within ion-battery systems.
期刊介绍:
This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on:
(i) physics and chemistry of defects in solids;
(ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering;
(iii) ion transport measurements, mechanisms and theory;
(iv) solid state electrochemistry;
(v) ionically-electronically mixed conducting solids.
Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties.
Review papers and relevant symposium proceedings are welcome.