Deligne范畴中的Kac-Moody代数

IF 0.8 2区 数学 Q2 MATHEMATICS
Ivan Motorin
{"title":"Deligne范畴中的Kac-Moody代数","authors":"Ivan Motorin","doi":"10.1016/j.jalgebra.2025.04.030","DOIUrl":null,"url":null,"abstract":"<div><div>We generalize the notion of a Kac-Moody Lie algebra to the setting of Deligne Categories. Then we derive the Kac-Weyl formula for the category <span><math><mi>O</mi></math></span> integrable representations for such an algebra. This paper generalizes results of A. Pakharev [12].</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"677 ","pages":"Pages 667-689"},"PeriodicalIF":0.8000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kac-Moody algebras in Deligne's category\",\"authors\":\"Ivan Motorin\",\"doi\":\"10.1016/j.jalgebra.2025.04.030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We generalize the notion of a Kac-Moody Lie algebra to the setting of Deligne Categories. Then we derive the Kac-Weyl formula for the category <span><math><mi>O</mi></math></span> integrable representations for such an algebra. This paper generalizes results of A. Pakharev [12].</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"677 \",\"pages\":\"Pages 667-689\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869325002509\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325002509","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们将Kac-Moody李代数的概念推广到Deligne范畴的集合。然后导出了该类代数的范畴可积表示的Kac-Weyl公式。本文推广了A. Pakharev[12]的研究结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kac-Moody algebras in Deligne's category
We generalize the notion of a Kac-Moody Lie algebra to the setting of Deligne Categories. Then we derive the Kac-Weyl formula for the category O integrable representations for such an algebra. This paper generalizes results of A. Pakharev [12].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信