地鼠肝脏中翻译后修饰的组蛋白水平在深度休眠期间发生改变

IF 2.1 3区 生物学 Q2 BIOLOGY
Remy Carter, Kenneth B. Storey
{"title":"地鼠肝脏中翻译后修饰的组蛋白水平在深度休眠期间发生改变","authors":"Remy Carter,&nbsp;Kenneth B. Storey","doi":"10.1016/j.cryobiol.2025.105256","DOIUrl":null,"url":null,"abstract":"<div><div>Thirteen-lined ground squirrels (<em>Ictidomys tridecemlineatus</em>) are obligate hibernators capable of reducing their metabolic rates by up to 99 % during winter. Their ability to remain dormant without food for an extended period in cold conditions has made them compelling subjects for research. Developing a clearer understanding of mechanisms surrounding the pre-transcriptional control of hibernating tissues is crucial for cryobiological applications such as organ preservation. Thus, we investigated the differential expression of 24 modified histones (MH) in the livers of torpid and euthermic free-ranging ground squirrels by immunoblotting histone-enriched extracts (p &lt; 0.05). We identified the torpor-responsive downregulation of multiple permissive MHs (H2BK5ac, H3K18ac, H3K23ac, H3K27ac, H3K4me2, H3K4me3, H4K20me1, H4R3me2s), including total H2B and H4, while the linker histone H1.0 was the only histone species that was upregulated. The present study provides valuable insights into the involvement of histone post-translational modifications in the epigenetic landscape of deeply torpid ground squirrel livers.</div></div>","PeriodicalId":10897,"journal":{"name":"Cryobiology","volume":"119 ","pages":"Article 105256"},"PeriodicalIF":2.1000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Levels of post-translationally modified histones in ground squirrel livers are altered during deep torpor\",\"authors\":\"Remy Carter,&nbsp;Kenneth B. Storey\",\"doi\":\"10.1016/j.cryobiol.2025.105256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Thirteen-lined ground squirrels (<em>Ictidomys tridecemlineatus</em>) are obligate hibernators capable of reducing their metabolic rates by up to 99 % during winter. Their ability to remain dormant without food for an extended period in cold conditions has made them compelling subjects for research. Developing a clearer understanding of mechanisms surrounding the pre-transcriptional control of hibernating tissues is crucial for cryobiological applications such as organ preservation. Thus, we investigated the differential expression of 24 modified histones (MH) in the livers of torpid and euthermic free-ranging ground squirrels by immunoblotting histone-enriched extracts (p &lt; 0.05). We identified the torpor-responsive downregulation of multiple permissive MHs (H2BK5ac, H3K18ac, H3K23ac, H3K27ac, H3K4me2, H3K4me3, H4K20me1, H4R3me2s), including total H2B and H4, while the linker histone H1.0 was the only histone species that was upregulated. The present study provides valuable insights into the involvement of histone post-translational modifications in the epigenetic landscape of deeply torpid ground squirrel livers.</div></div>\",\"PeriodicalId\":10897,\"journal\":{\"name\":\"Cryobiology\",\"volume\":\"119 \",\"pages\":\"Article 105256\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cryobiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0011224025000628\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryobiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011224025000628","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

十三棱地松鼠(Ictidomys tridecemlineatus)是专性冬眠动物,能够在冬季将其代谢率降低99%。它们能够在寒冷的条件下长时间不吃东西而保持休眠状态,这使它们成为引人注目的研究对象。对冬眠组织的转录前控制机制有更清晰的了解,这对于器官保存等低温生物学应用至关重要。因此,我们通过免疫印迹法研究了24种修饰组蛋白(MH)在冬眠和恒温散养地松鼠肝脏中的差异表达(p <;0.05)。我们发现了包括H2B和H4在内的多个容许性MHs (H2BK5ac, H3K18ac, H3K23ac, H3K27ac, H3K4me2, H3K4me3, H4K20me1, H4R3me2s)的静止响应性下调,而连接蛋白H1.0是唯一上调的组蛋白物种。本研究为组蛋白翻译后修饰在深冬眠地松鼠肝脏表观遗传景观中的参与提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Levels of post-translationally modified histones in ground squirrel livers are altered during deep torpor
Thirteen-lined ground squirrels (Ictidomys tridecemlineatus) are obligate hibernators capable of reducing their metabolic rates by up to 99 % during winter. Their ability to remain dormant without food for an extended period in cold conditions has made them compelling subjects for research. Developing a clearer understanding of mechanisms surrounding the pre-transcriptional control of hibernating tissues is crucial for cryobiological applications such as organ preservation. Thus, we investigated the differential expression of 24 modified histones (MH) in the livers of torpid and euthermic free-ranging ground squirrels by immunoblotting histone-enriched extracts (p < 0.05). We identified the torpor-responsive downregulation of multiple permissive MHs (H2BK5ac, H3K18ac, H3K23ac, H3K27ac, H3K4me2, H3K4me3, H4K20me1, H4R3me2s), including total H2B and H4, while the linker histone H1.0 was the only histone species that was upregulated. The present study provides valuable insights into the involvement of histone post-translational modifications in the epigenetic landscape of deeply torpid ground squirrel livers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cryobiology
Cryobiology 生物-生理学
CiteScore
5.40
自引率
7.40%
发文量
71
审稿时长
56 days
期刊介绍: Cryobiology: International Journal of Low Temperature Biology and Medicine publishes research articles on all aspects of low temperature biology and medicine. Research Areas include: • Cryoprotective additives and their pharmacological actions • Cryosurgery • Freeze-drying • Freezing • Frost hardiness in plants • Hibernation • Hypothermia • Medical applications of reduced temperature • Perfusion of organs • All pertinent methodologies Cryobiology is the official journal of the Society for Cryobiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信