{"title":"琼脂胶对土粒间黏结及单轴抗压强度的影响","authors":"Sangbeen Lee , Jae-Eun Ryou , Tae-Hyuk Kwon , Jongwon Jung","doi":"10.1016/j.polymertesting.2025.108828","DOIUrl":null,"url":null,"abstract":"<div><div>The treatment of soil with biopolymers has demonstrated various benefits, including strength enhancement, reduction in the permeability coefficient, and promotion of vegetation. Consequently, numerous experiments have been conducted to evaluate the strength of biopolymer-treated soils. This study aims to evaluate the interparticle bonding strength attributed to the biopolymer network formed between soil particles, focusing on the strength characteristics at the particle scale. Agar gum, a thermo-gelling biopolymer, was selected to assess the strength of biopolymer solutions. Experiments were conducted at concentrations of 2 %, 4 %, and 6 % with varying drying times to account for the differences in water content. The bonding, tensile, and shear strengths of the agar gum polymer solutions were evaluated under different loading conditions. To compare the strengths and meaningful trends observed in the agar gum polymer solution under different conditions. The results demonstrated that for all strength conditions involving the agar gum solution, the strength increased with higher concentrations and lower water content. During the particle size test, the bonding strength was improved up to 160 kPa, and the tensile strength of the agar gum polymer itself was observed to be up to 351 kPa. Furthermore, the UCS test results of the silica sand mixed with agar gum showed an improvement up to 1419 kPa. Among the evaluated strengths, the tensile strength was the highest, whereas the shear strength was the lowest. A comparison between the adhesive strength tests, which evaluated the strength characteristics at the soil particle scale, and the UCS of silica sand mixed with an agar gum solution revealed a similar trend. The shear strength increased consistently with drying time across all concentration conditions, which was consistent with the trends observed in the UCS. These findings suggest that the strength characteristics of soils treated with agar gum solutions can be effectively predicted and utilized for ground improvement applications.</div></div>","PeriodicalId":20628,"journal":{"name":"Polymer Testing","volume":"148 ","pages":"Article 108828"},"PeriodicalIF":5.0000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Agar gum on the interparticle bonding and uniaxial compressive strength of soils\",\"authors\":\"Sangbeen Lee , Jae-Eun Ryou , Tae-Hyuk Kwon , Jongwon Jung\",\"doi\":\"10.1016/j.polymertesting.2025.108828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The treatment of soil with biopolymers has demonstrated various benefits, including strength enhancement, reduction in the permeability coefficient, and promotion of vegetation. Consequently, numerous experiments have been conducted to evaluate the strength of biopolymer-treated soils. This study aims to evaluate the interparticle bonding strength attributed to the biopolymer network formed between soil particles, focusing on the strength characteristics at the particle scale. Agar gum, a thermo-gelling biopolymer, was selected to assess the strength of biopolymer solutions. Experiments were conducted at concentrations of 2 %, 4 %, and 6 % with varying drying times to account for the differences in water content. The bonding, tensile, and shear strengths of the agar gum polymer solutions were evaluated under different loading conditions. To compare the strengths and meaningful trends observed in the agar gum polymer solution under different conditions. The results demonstrated that for all strength conditions involving the agar gum solution, the strength increased with higher concentrations and lower water content. During the particle size test, the bonding strength was improved up to 160 kPa, and the tensile strength of the agar gum polymer itself was observed to be up to 351 kPa. Furthermore, the UCS test results of the silica sand mixed with agar gum showed an improvement up to 1419 kPa. Among the evaluated strengths, the tensile strength was the highest, whereas the shear strength was the lowest. A comparison between the adhesive strength tests, which evaluated the strength characteristics at the soil particle scale, and the UCS of silica sand mixed with an agar gum solution revealed a similar trend. The shear strength increased consistently with drying time across all concentration conditions, which was consistent with the trends observed in the UCS. These findings suggest that the strength characteristics of soils treated with agar gum solutions can be effectively predicted and utilized for ground improvement applications.</div></div>\",\"PeriodicalId\":20628,\"journal\":{\"name\":\"Polymer Testing\",\"volume\":\"148 \",\"pages\":\"Article 108828\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Testing\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142941825001424\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Testing","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142941825001424","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Effect of Agar gum on the interparticle bonding and uniaxial compressive strength of soils
The treatment of soil with biopolymers has demonstrated various benefits, including strength enhancement, reduction in the permeability coefficient, and promotion of vegetation. Consequently, numerous experiments have been conducted to evaluate the strength of biopolymer-treated soils. This study aims to evaluate the interparticle bonding strength attributed to the biopolymer network formed between soil particles, focusing on the strength characteristics at the particle scale. Agar gum, a thermo-gelling biopolymer, was selected to assess the strength of biopolymer solutions. Experiments were conducted at concentrations of 2 %, 4 %, and 6 % with varying drying times to account for the differences in water content. The bonding, tensile, and shear strengths of the agar gum polymer solutions were evaluated under different loading conditions. To compare the strengths and meaningful trends observed in the agar gum polymer solution under different conditions. The results demonstrated that for all strength conditions involving the agar gum solution, the strength increased with higher concentrations and lower water content. During the particle size test, the bonding strength was improved up to 160 kPa, and the tensile strength of the agar gum polymer itself was observed to be up to 351 kPa. Furthermore, the UCS test results of the silica sand mixed with agar gum showed an improvement up to 1419 kPa. Among the evaluated strengths, the tensile strength was the highest, whereas the shear strength was the lowest. A comparison between the adhesive strength tests, which evaluated the strength characteristics at the soil particle scale, and the UCS of silica sand mixed with an agar gum solution revealed a similar trend. The shear strength increased consistently with drying time across all concentration conditions, which was consistent with the trends observed in the UCS. These findings suggest that the strength characteristics of soils treated with agar gum solutions can be effectively predicted and utilized for ground improvement applications.
期刊介绍:
Polymer Testing focuses on the testing, analysis and characterization of polymer materials, including both synthetic and natural or biobased polymers. Novel testing methods and the testing of novel polymeric materials in bulk, solution and dispersion is covered. In addition, we welcome the submission of the testing of polymeric materials for a wide range of applications and industrial products as well as nanoscale characterization.
The scope includes but is not limited to the following main topics:
Novel testing methods and Chemical analysis
• mechanical, thermal, electrical, chemical, imaging, spectroscopy, scattering and rheology
Physical properties and behaviour of novel polymer systems
• nanoscale properties, morphology, transport properties
Degradation and recycling of polymeric materials when combined with novel testing or characterization methods
• degradation, biodegradation, ageing and fire retardancy
Modelling and Simulation work will be only considered when it is linked to new or previously published experimental results.