Antonin Wargnier , Olivier Poch , Giovanni Poggiali , Thomas Gautier , Alain Doressoundiram , Pierre Beck , Tomoki Nakamura , Hideaki Miyamoto , Shingo Kameda , Nathalie Ruscassier , Arnaud Buch , Pedro H. Hasselmann , Robin Sultana , Eric Quirico , Sonia Fornasier , Maria Antonietta Barucci
{"title":"火卫一模拟物的分光光度法2。孔隙率和质地的影响","authors":"Antonin Wargnier , Olivier Poch , Giovanni Poggiali , Thomas Gautier , Alain Doressoundiram , Pierre Beck , Tomoki Nakamura , Hideaki Miyamoto , Shingo Kameda , Nathalie Ruscassier , Arnaud Buch , Pedro H. Hasselmann , Robin Sultana , Eric Quirico , Sonia Fornasier , Maria Antonietta Barucci","doi":"10.1016/j.icarus.2025.116611","DOIUrl":null,"url":null,"abstract":"<div><div>Surface porosity and texture has been found to be an important property for small bodies. Some asteroids and comets can exhibit an extremely high surface porosity in the first millimeter layer. This layer may be produced by various processes and maintained by the lack of an atmosphere. However, the influence of porosity on the spectro-photometric properties of small body surfaces is not yet fully understood.</div><div>In this study, we looked into the effect of the texture on the spectro-photometric properties of Phobos regolith spectroscopic simulants. Macro- and micro-porosity were created by mixing the simulants with ultra-pure water, producing ice-dust particles, and then sublimating the water. The sublimation of the water ice enabled the production of porous and rough powdered simulants with significant micro- and macro-porosity associated with macro-roughness. The reflectance spectroscopic properties in the visible and near-infrared (0.5–4.2 <span><math><mrow><mi>μ</mi><mi>m</mi></mrow></math></span>) demonstrate a brightening of the porous samples in comparison to the compact ones. One simulant exhibits a bluing of the spectral slope after increasing porosity, which is likely linked to the presence of expandable phyllosilicates. In the mid-infrared range, a contrast increase of the 10 <span><math><mrow><mi>μ</mi><mi>m</mi></mrow></math></span> emissivity-related plateau due to silicates is observed. This spectral feature is typically observed as a 10 <span><math><mrow><mi>μ</mi><mi>m</mi></mrow></math></span> emissivity plateau on some asteroids, making the mid-infrared region important for assessing mineralogy and surface texture.</div><div>Photometry reveals a modification of the phase reddening behavior between the compact powder and the sublimation residue for both simulants. However, the observed behavior is different between the simulants, suggesting that the phase reddening may be dependent on the composition of the simulants. The phase curves of the sublimation residues exhibit a higher contribution of forward scattering. The derivation of the Hapke parameters indicates an increase in roughness for the porous sample, but no significant modification of the opposition effect. The modifications of the spectrophotometric properties observed in this experiment are definitely due to the textural changes obtained after sublimation, which depend on the initial composition of the simulants.</div><div>This study aims to provide new insights into the understanding of porosity by using two Phobos simulants in the context of the upcoming JAXA/Martian Moons eXploration mission. We suggest that the Phobos blue unit may be due to the presence of a highly porous layer, rather than only to space-weathering processes, as often postulated.</div></div>","PeriodicalId":13199,"journal":{"name":"Icarus","volume":"438 ","pages":"Article 116611"},"PeriodicalIF":2.5000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectro-photometry of Phobos simulants II. Effects of porosity and texture\",\"authors\":\"Antonin Wargnier , Olivier Poch , Giovanni Poggiali , Thomas Gautier , Alain Doressoundiram , Pierre Beck , Tomoki Nakamura , Hideaki Miyamoto , Shingo Kameda , Nathalie Ruscassier , Arnaud Buch , Pedro H. Hasselmann , Robin Sultana , Eric Quirico , Sonia Fornasier , Maria Antonietta Barucci\",\"doi\":\"10.1016/j.icarus.2025.116611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Surface porosity and texture has been found to be an important property for small bodies. Some asteroids and comets can exhibit an extremely high surface porosity in the first millimeter layer. This layer may be produced by various processes and maintained by the lack of an atmosphere. However, the influence of porosity on the spectro-photometric properties of small body surfaces is not yet fully understood.</div><div>In this study, we looked into the effect of the texture on the spectro-photometric properties of Phobos regolith spectroscopic simulants. Macro- and micro-porosity were created by mixing the simulants with ultra-pure water, producing ice-dust particles, and then sublimating the water. The sublimation of the water ice enabled the production of porous and rough powdered simulants with significant micro- and macro-porosity associated with macro-roughness. The reflectance spectroscopic properties in the visible and near-infrared (0.5–4.2 <span><math><mrow><mi>μ</mi><mi>m</mi></mrow></math></span>) demonstrate a brightening of the porous samples in comparison to the compact ones. One simulant exhibits a bluing of the spectral slope after increasing porosity, which is likely linked to the presence of expandable phyllosilicates. In the mid-infrared range, a contrast increase of the 10 <span><math><mrow><mi>μ</mi><mi>m</mi></mrow></math></span> emissivity-related plateau due to silicates is observed. This spectral feature is typically observed as a 10 <span><math><mrow><mi>μ</mi><mi>m</mi></mrow></math></span> emissivity plateau on some asteroids, making the mid-infrared region important for assessing mineralogy and surface texture.</div><div>Photometry reveals a modification of the phase reddening behavior between the compact powder and the sublimation residue for both simulants. However, the observed behavior is different between the simulants, suggesting that the phase reddening may be dependent on the composition of the simulants. The phase curves of the sublimation residues exhibit a higher contribution of forward scattering. The derivation of the Hapke parameters indicates an increase in roughness for the porous sample, but no significant modification of the opposition effect. The modifications of the spectrophotometric properties observed in this experiment are definitely due to the textural changes obtained after sublimation, which depend on the initial composition of the simulants.</div><div>This study aims to provide new insights into the understanding of porosity by using two Phobos simulants in the context of the upcoming JAXA/Martian Moons eXploration mission. We suggest that the Phobos blue unit may be due to the presence of a highly porous layer, rather than only to space-weathering processes, as often postulated.</div></div>\",\"PeriodicalId\":13199,\"journal\":{\"name\":\"Icarus\",\"volume\":\"438 \",\"pages\":\"Article 116611\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Icarus\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019103525001587\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Icarus","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019103525001587","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Spectro-photometry of Phobos simulants II. Effects of porosity and texture
Surface porosity and texture has been found to be an important property for small bodies. Some asteroids and comets can exhibit an extremely high surface porosity in the first millimeter layer. This layer may be produced by various processes and maintained by the lack of an atmosphere. However, the influence of porosity on the spectro-photometric properties of small body surfaces is not yet fully understood.
In this study, we looked into the effect of the texture on the spectro-photometric properties of Phobos regolith spectroscopic simulants. Macro- and micro-porosity were created by mixing the simulants with ultra-pure water, producing ice-dust particles, and then sublimating the water. The sublimation of the water ice enabled the production of porous and rough powdered simulants with significant micro- and macro-porosity associated with macro-roughness. The reflectance spectroscopic properties in the visible and near-infrared (0.5–4.2 ) demonstrate a brightening of the porous samples in comparison to the compact ones. One simulant exhibits a bluing of the spectral slope after increasing porosity, which is likely linked to the presence of expandable phyllosilicates. In the mid-infrared range, a contrast increase of the 10 emissivity-related plateau due to silicates is observed. This spectral feature is typically observed as a 10 emissivity plateau on some asteroids, making the mid-infrared region important for assessing mineralogy and surface texture.
Photometry reveals a modification of the phase reddening behavior between the compact powder and the sublimation residue for both simulants. However, the observed behavior is different between the simulants, suggesting that the phase reddening may be dependent on the composition of the simulants. The phase curves of the sublimation residues exhibit a higher contribution of forward scattering. The derivation of the Hapke parameters indicates an increase in roughness for the porous sample, but no significant modification of the opposition effect. The modifications of the spectrophotometric properties observed in this experiment are definitely due to the textural changes obtained after sublimation, which depend on the initial composition of the simulants.
This study aims to provide new insights into the understanding of porosity by using two Phobos simulants in the context of the upcoming JAXA/Martian Moons eXploration mission. We suggest that the Phobos blue unit may be due to the presence of a highly porous layer, rather than only to space-weathering processes, as often postulated.
期刊介绍:
Icarus is devoted to the publication of original contributions in the field of Solar System studies. Manuscripts reporting the results of new research - observational, experimental, or theoretical - concerning the astronomy, geology, meteorology, physics, chemistry, biology, and other scientific aspects of our Solar System or extrasolar systems are welcome. The journal generally does not publish papers devoted exclusively to the Sun, the Earth, celestial mechanics, meteoritics, or astrophysics. Icarus does not publish papers that provide "improved" versions of Bode''s law, or other numerical relations, without a sound physical basis. Icarus does not publish meeting announcements or general notices. Reviews, historical papers, and manuscripts describing spacecraft instrumentation may be considered, but only with prior approval of the editor. An entire issue of the journal is occasionally devoted to a single subject, usually arising from a conference on the same topic. The language of publication is English. American or British usage is accepted, but not a mixture of these.