沙堆模群与加权Leavitt路径代数之间的结构联系

IF 0.8 2区 数学 Q2 MATHEMATICS
Roozbeh Hazrat , Tran Giang Nam
{"title":"沙堆模群与加权Leavitt路径代数之间的结构联系","authors":"Roozbeh Hazrat ,&nbsp;Tran Giang Nam","doi":"10.1016/j.jalgebra.2025.04.034","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, we establish the relations between a sandpile graph, its sandpile monoid and the weighted Leavitt path algebra associated with it. Namely, we show that the lattice of all idempotents of the sandpile monoid <span><math><mtext>SP</mtext><mo>(</mo><mi>E</mi><mo>)</mo></math></span> of a sandpile graph <em>E</em> is both isomorphic to the lattice of all nonempty saturated hereditary subsets of <em>E</em>, the lattice of all order-ideals of <span><math><mtext>SP</mtext><mo>(</mo><mi>E</mi><mo>)</mo></math></span> and the lattice of all ideals of the weighted Leavitt path algebra <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>E</mi><mo>,</mo><mi>ω</mi><mo>)</mo></math></span> generated by vertices. Also, we describe the sandpile group of a sandpile graph <em>E</em> via archimedean classes of <span><math><mtext>SP</mtext><mo>(</mo><mi>E</mi><mo>)</mo></math></span>, and prove that all maximal subgroups of <span><math><mtext>SP</mtext><mo>(</mo><mi>E</mi><mo>)</mo></math></span> are exactly the Grothendieck groups of these archimedean classes. Finally, we give the structure of the Leavitt path algebra <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>E</mi><mo>)</mo></math></span> of a sandpile graph <em>E</em> via a finite chain of graded ideals being invariant under every graded automorphism of <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>E</mi><mo>)</mo></math></span>, and completely describe the structure of <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>E</mi><mo>)</mo></math></span> such that the lattice of all idempotents of <span><math><mtext>SP</mtext><mo>(</mo><mi>E</mi><mo>)</mo></math></span> is a chain. Consequently, we completely describe the structure of the weighted Leavitt path algebra of a sandpile graph <em>E</em> such that <span><math><mtext>SP</mtext><mo>(</mo><mi>E</mi><mo>)</mo></math></span> has exactly two idempotents.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"678 ","pages":"Pages 543-569"},"PeriodicalIF":0.8000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On structural connections between sandpile monoids and weighted Leavitt path algebras\",\"authors\":\"Roozbeh Hazrat ,&nbsp;Tran Giang Nam\",\"doi\":\"10.1016/j.jalgebra.2025.04.034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this article, we establish the relations between a sandpile graph, its sandpile monoid and the weighted Leavitt path algebra associated with it. Namely, we show that the lattice of all idempotents of the sandpile monoid <span><math><mtext>SP</mtext><mo>(</mo><mi>E</mi><mo>)</mo></math></span> of a sandpile graph <em>E</em> is both isomorphic to the lattice of all nonempty saturated hereditary subsets of <em>E</em>, the lattice of all order-ideals of <span><math><mtext>SP</mtext><mo>(</mo><mi>E</mi><mo>)</mo></math></span> and the lattice of all ideals of the weighted Leavitt path algebra <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>E</mi><mo>,</mo><mi>ω</mi><mo>)</mo></math></span> generated by vertices. Also, we describe the sandpile group of a sandpile graph <em>E</em> via archimedean classes of <span><math><mtext>SP</mtext><mo>(</mo><mi>E</mi><mo>)</mo></math></span>, and prove that all maximal subgroups of <span><math><mtext>SP</mtext><mo>(</mo><mi>E</mi><mo>)</mo></math></span> are exactly the Grothendieck groups of these archimedean classes. Finally, we give the structure of the Leavitt path algebra <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>E</mi><mo>)</mo></math></span> of a sandpile graph <em>E</em> via a finite chain of graded ideals being invariant under every graded automorphism of <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>E</mi><mo>)</mo></math></span>, and completely describe the structure of <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>E</mi><mo>)</mo></math></span> such that the lattice of all idempotents of <span><math><mtext>SP</mtext><mo>(</mo><mi>E</mi><mo>)</mo></math></span> is a chain. Consequently, we completely describe the structure of the weighted Leavitt path algebra of a sandpile graph <em>E</em> such that <span><math><mtext>SP</mtext><mo>(</mo><mi>E</mi><mo>)</mo></math></span> has exactly two idempotents.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"678 \",\"pages\":\"Pages 543-569\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869325002625\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325002625","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们建立了一个沙堆图,它的沙堆单形和与之相关的加权Leavitt路径代数之间的关系。也就是说,我们证明了沙堆图E的沙堆单阵SP(E)的所有幂等格与E的所有非空饱和遗传子集的格、SP(E)的所有序理想的格和由顶点生成的加权莱维特路径代数Lk(E,ω)的所有理想的格同构。同时,我们用SP(E)的阿基米德类描述了沙堆图E的沙堆群,并证明了SP(E)的所有极大子群都是这些阿基米德类的Grothendieck群。最后,我们通过在Lk(E)的每一阶自同构下阶理想不变的有限链,给出了沙堆图E的Leavitt路径代数Lk(E)的结构,并完整地描述了Lk(E)的结构,使得SP(E)的所有幂等元的格是一条链。因此,我们完整地描述了沙堆图E的加权Leavitt路径代数的结构,使得SP(E)恰好有两个幂等元。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On structural connections between sandpile monoids and weighted Leavitt path algebras
In this article, we establish the relations between a sandpile graph, its sandpile monoid and the weighted Leavitt path algebra associated with it. Namely, we show that the lattice of all idempotents of the sandpile monoid SP(E) of a sandpile graph E is both isomorphic to the lattice of all nonempty saturated hereditary subsets of E, the lattice of all order-ideals of SP(E) and the lattice of all ideals of the weighted Leavitt path algebra Lk(E,ω) generated by vertices. Also, we describe the sandpile group of a sandpile graph E via archimedean classes of SP(E), and prove that all maximal subgroups of SP(E) are exactly the Grothendieck groups of these archimedean classes. Finally, we give the structure of the Leavitt path algebra Lk(E) of a sandpile graph E via a finite chain of graded ideals being invariant under every graded automorphism of Lk(E), and completely describe the structure of Lk(E) such that the lattice of all idempotents of SP(E) is a chain. Consequently, we completely describe the structure of the weighted Leavitt path algebra of a sandpile graph E such that SP(E) has exactly two idempotents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信