碱性蚀刻法制备高性能超级电容器用镍金属氧化物镍- ldh复合材料

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Yazhou Liu , Jingwen Hu , Qiyong Zhu , Ping Yang , Yao Jiang , Xuezhi Zhang , Siying Wu
{"title":"碱性蚀刻法制备高性能超级电容器用镍金属氧化物镍- ldh复合材料","authors":"Yazhou Liu ,&nbsp;Jingwen Hu ,&nbsp;Qiyong Zhu ,&nbsp;Ping Yang ,&nbsp;Yao Jiang ,&nbsp;Xuezhi Zhang ,&nbsp;Siying Wu","doi":"10.1016/j.jpcs.2025.112834","DOIUrl":null,"url":null,"abstract":"<div><div>An innovative preparation approach was utilized to prepare bimetallic nanohybrid arrays of NiCo-LDH onto nickel foam through a hydrothermal technique. Then, 2,5-Dihydroxyterephthalic acid ligands were engaged to synthesize NiCo-MOF via a solvothermal method. Subsequently, an alkaline etching-induced technique transformed the bimetallic MOF back into LDH (designated as Et–NiCo-LDH), yielding a bimetallic hydroxide characterized by a denser nanohybrid array and a more abundant pore structure, thereby demonstrating exceptional specific capacitance. The resultant material exhibited a remarkable specific capacitance of 22.39 F cm<sup>−2</sup> at a current density of 2 mA cm<sup>−2</sup> (about 1194.16 F g<sup>−1</sup> at 1 A g<sup>−1</sup>.The loading capacity is 12 mg per square centimeter). After enduring 5000 galvanostatic charge-discharge cycles at a current density of 15 mA cm<sup>−2</sup>, the material maintained 83.6 % of its initial capacity. Furthermore, when assembled into an asymmetric supercapacitor device with the as-synthesized Et–NiCo-LDH@NF composites serving as the positive electrode and activated carbon (AC) as the negative electrode, the device demonstrated an energy density of 671.42 Wh m<sup>−2</sup> and a power density of 1399.99 W m<sup>−2</sup>. Additionally, at a mass loading of 1 A g<sup>−1</sup>, the energy density and power density were recorded as 45.04 Wh kg<sup>−1</sup> and 350.37 W kg<sup>−1</sup>, respectively, with a mass loading of 12 mg cm<sup>−2</sup>. A capacity retention rate of 85.6 % was achieved after 5000 cycles. This study offers a straightforward method for producing uniform and dense bimetallic nanohybrid arrays tailored for applications in the capacitor field.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"206 ","pages":"Article 112834"},"PeriodicalIF":4.3000,"publicationDate":"2025-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation of NiCo-LDH composite materials derived from NiCo-MOF by alkaline etching for high performance supercapacitor\",\"authors\":\"Yazhou Liu ,&nbsp;Jingwen Hu ,&nbsp;Qiyong Zhu ,&nbsp;Ping Yang ,&nbsp;Yao Jiang ,&nbsp;Xuezhi Zhang ,&nbsp;Siying Wu\",\"doi\":\"10.1016/j.jpcs.2025.112834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>An innovative preparation approach was utilized to prepare bimetallic nanohybrid arrays of NiCo-LDH onto nickel foam through a hydrothermal technique. Then, 2,5-Dihydroxyterephthalic acid ligands were engaged to synthesize NiCo-MOF via a solvothermal method. Subsequently, an alkaline etching-induced technique transformed the bimetallic MOF back into LDH (designated as Et–NiCo-LDH), yielding a bimetallic hydroxide characterized by a denser nanohybrid array and a more abundant pore structure, thereby demonstrating exceptional specific capacitance. The resultant material exhibited a remarkable specific capacitance of 22.39 F cm<sup>−2</sup> at a current density of 2 mA cm<sup>−2</sup> (about 1194.16 F g<sup>−1</sup> at 1 A g<sup>−1</sup>.The loading capacity is 12 mg per square centimeter). After enduring 5000 galvanostatic charge-discharge cycles at a current density of 15 mA cm<sup>−2</sup>, the material maintained 83.6 % of its initial capacity. Furthermore, when assembled into an asymmetric supercapacitor device with the as-synthesized Et–NiCo-LDH@NF composites serving as the positive electrode and activated carbon (AC) as the negative electrode, the device demonstrated an energy density of 671.42 Wh m<sup>−2</sup> and a power density of 1399.99 W m<sup>−2</sup>. Additionally, at a mass loading of 1 A g<sup>−1</sup>, the energy density and power density were recorded as 45.04 Wh kg<sup>−1</sup> and 350.37 W kg<sup>−1</sup>, respectively, with a mass loading of 12 mg cm<sup>−2</sup>. A capacity retention rate of 85.6 % was achieved after 5000 cycles. This study offers a straightforward method for producing uniform and dense bimetallic nanohybrid arrays tailored for applications in the capacitor field.</div></div>\",\"PeriodicalId\":16811,\"journal\":{\"name\":\"Journal of Physics and Chemistry of Solids\",\"volume\":\"206 \",\"pages\":\"Article 112834\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics and Chemistry of Solids\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022369725002860\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369725002860","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

采用创新的制备方法,利用水热技术在泡沫镍上制备了镍- ldh双金属纳米杂化阵列。以2,5-二羟基对苯二甲酸为配体,采用溶剂热法合成NiCo-MOF。随后,碱性蚀刻诱导技术将双金属MOF转化为LDH(称为Et-NiCo-LDH),生成具有更密集的纳米杂化阵列和更丰富的孔隙结构的双金属氢氧化物,从而表现出优异的比电容。所得材料在电流密度为2 mA cm−2时表现出22.39 F cm−2的显著比电容(在1 a g−1时约为1194.16 F g−1)。承载能力为每平方厘米12毫克)。在15 mA cm−2的电流密度下,经过5000次恒流充放电循环后,该材料保持了83.6%的初始容量。此外,当将合成的Et - NiCo-LDH@NF复合材料作为正极,活性炭(AC)作为负极组装成非对称超级电容器器件时,该器件的能量密度为671.42 Wh m−2,功率密度为1399.99 W m−2。此外,在质量加载为1 a g−1时,能量密度和功率密度分别为45.04 Wh kg−1和350.37 W kg−1,质量加载为12 mg cm−2。经过5000次循环后,容量保留率达到85.6%。该研究提供了一种直接的方法来生产均匀致密的双金属纳米混合阵列,适合于电容器领域的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Preparation of NiCo-LDH composite materials derived from NiCo-MOF by alkaline etching for high performance supercapacitor
An innovative preparation approach was utilized to prepare bimetallic nanohybrid arrays of NiCo-LDH onto nickel foam through a hydrothermal technique. Then, 2,5-Dihydroxyterephthalic acid ligands were engaged to synthesize NiCo-MOF via a solvothermal method. Subsequently, an alkaline etching-induced technique transformed the bimetallic MOF back into LDH (designated as Et–NiCo-LDH), yielding a bimetallic hydroxide characterized by a denser nanohybrid array and a more abundant pore structure, thereby demonstrating exceptional specific capacitance. The resultant material exhibited a remarkable specific capacitance of 22.39 F cm−2 at a current density of 2 mA cm−2 (about 1194.16 F g−1 at 1 A g−1.The loading capacity is 12 mg per square centimeter). After enduring 5000 galvanostatic charge-discharge cycles at a current density of 15 mA cm−2, the material maintained 83.6 % of its initial capacity. Furthermore, when assembled into an asymmetric supercapacitor device with the as-synthesized Et–NiCo-LDH@NF composites serving as the positive electrode and activated carbon (AC) as the negative electrode, the device demonstrated an energy density of 671.42 Wh m−2 and a power density of 1399.99 W m−2. Additionally, at a mass loading of 1 A g−1, the energy density and power density were recorded as 45.04 Wh kg−1 and 350.37 W kg−1, respectively, with a mass loading of 12 mg cm−2. A capacity retention rate of 85.6 % was achieved after 5000 cycles. This study offers a straightforward method for producing uniform and dense bimetallic nanohybrid arrays tailored for applications in the capacitor field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physics and Chemistry of Solids
Journal of Physics and Chemistry of Solids 工程技术-化学综合
CiteScore
7.80
自引率
2.50%
发文量
605
审稿时长
40 days
期刊介绍: The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems. Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal: Low-dimensional systems Exotic states of quantum electron matter including topological phases Energy conversion and storage Interfaces, nanoparticles and catalysts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信