一属曲线的二次扭转

IF 0.6 3区 数学 Q3 MATHEMATICS
Lukas Novak
{"title":"一属曲线的二次扭转","authors":"Lukas Novak","doi":"10.1016/j.jnt.2025.02.001","DOIUrl":null,"url":null,"abstract":"<div><div>For a given irreducible and monic polynomial <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>∈</mo><mi>Z</mi><mo>[</mo><mi>x</mi><mo>]</mo></math></span> of degree 4, we consider the quadratic twists by square-free integers <em>q</em> of the genus one quartic <span><math><mi>H</mi><mspace></mspace><mo>:</mo><mspace></mspace><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span><span><span><span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>q</mi></mrow></msub><mspace></mspace><mo>:</mo><mspace></mspace><mi>q</mi><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>.</mo></math></span></span></span></div><div>Let <em>L</em> denote the set of positive square-free integers <em>q</em> for which <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> is everywhere locally solvable. For a real number <em>x</em>, let <span><math><mi>L</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>#</mi><mo>{</mo><mi>q</mi><mo>∈</mo><mi>L</mi><mo>:</mo><mspace></mspace><mi>q</mi><mo>≤</mo><mi>x</mi><mo>}</mo></math></span> be the number of elements in <em>L</em> that are less than or equal to <em>x</em>.</div><div>In this paper, we obtain that<span><span><span><math><mi>L</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>f</mi></mrow></msub><mfrac><mrow><mi>x</mi></mrow><mrow><msup><mrow><mo>(</mo><mi>ln</mi><mo>⁡</mo><mi>x</mi><mo>)</mo></mrow><mrow><mi>m</mi></mrow></msup></mrow></mfrac><mo>+</mo><mi>O</mi><mrow><mo>(</mo><mfrac><mrow><mi>x</mi></mrow><mrow><msup><mrow><mo>(</mo><mi>ln</mi><mo>⁡</mo><mi>x</mi><mo>)</mo></mrow><mrow><mi>α</mi></mrow></msup></mrow></mfrac><mo>)</mo></mrow></math></span></span></span> for some constants <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>&gt;</mo><mn>0</mn></math></span>, <em>m</em> and <em>α</em> only depending on <em>f</em> such that <span><math><mi>m</mi><mo>&lt;</mo><mi>α</mi><mo>≤</mo><mn>1</mn><mo>+</mo><mi>m</mi></math></span>. We also express the Dirichlet series <span><math><mi>F</mi><mo>(</mo><mi>s</mi><mo>)</mo><mo>=</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>∈</mo><mi>L</mi></mrow></msub><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mi>s</mi></mrow></msup></math></span> associated to the set <em>L</em> in terms of Dedekind zeta functions of certain number fields.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"276 ","pages":"Pages 1-22"},"PeriodicalIF":0.6000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quadratic twists of genus one curves\",\"authors\":\"Lukas Novak\",\"doi\":\"10.1016/j.jnt.2025.02.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For a given irreducible and monic polynomial <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>∈</mo><mi>Z</mi><mo>[</mo><mi>x</mi><mo>]</mo></math></span> of degree 4, we consider the quadratic twists by square-free integers <em>q</em> of the genus one quartic <span><math><mi>H</mi><mspace></mspace><mo>:</mo><mspace></mspace><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span><span><span><span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>q</mi></mrow></msub><mspace></mspace><mo>:</mo><mspace></mspace><mi>q</mi><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>.</mo></math></span></span></span></div><div>Let <em>L</em> denote the set of positive square-free integers <em>q</em> for which <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> is everywhere locally solvable. For a real number <em>x</em>, let <span><math><mi>L</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>#</mi><mo>{</mo><mi>q</mi><mo>∈</mo><mi>L</mi><mo>:</mo><mspace></mspace><mi>q</mi><mo>≤</mo><mi>x</mi><mo>}</mo></math></span> be the number of elements in <em>L</em> that are less than or equal to <em>x</em>.</div><div>In this paper, we obtain that<span><span><span><math><mi>L</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>f</mi></mrow></msub><mfrac><mrow><mi>x</mi></mrow><mrow><msup><mrow><mo>(</mo><mi>ln</mi><mo>⁡</mo><mi>x</mi><mo>)</mo></mrow><mrow><mi>m</mi></mrow></msup></mrow></mfrac><mo>+</mo><mi>O</mi><mrow><mo>(</mo><mfrac><mrow><mi>x</mi></mrow><mrow><msup><mrow><mo>(</mo><mi>ln</mi><mo>⁡</mo><mi>x</mi><mo>)</mo></mrow><mrow><mi>α</mi></mrow></msup></mrow></mfrac><mo>)</mo></mrow></math></span></span></span> for some constants <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>&gt;</mo><mn>0</mn></math></span>, <em>m</em> and <em>α</em> only depending on <em>f</em> such that <span><math><mi>m</mi><mo>&lt;</mo><mi>α</mi><mo>≤</mo><mn>1</mn><mo>+</mo><mi>m</mi></math></span>. We also express the Dirichlet series <span><math><mi>F</mi><mo>(</mo><mi>s</mi><mo>)</mo><mo>=</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>∈</mo><mi>L</mi></mrow></msub><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mi>s</mi></mrow></msup></math></span> associated to the set <em>L</em> in terms of Dedekind zeta functions of certain number fields.</div></div>\",\"PeriodicalId\":50110,\"journal\":{\"name\":\"Journal of Number Theory\",\"volume\":\"276 \",\"pages\":\"Pages 1-22\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022314X25001027\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X25001027","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于给定的4次不可约单多项式f(x)∈Z[x],我们考虑了一四次属的无平方整数q: y2=f(x)Hq:qy2=f(x)的二次扭转。设L表示无平方正整数q的集合,其中Hq处处是局部可解的。对于实数x,设L(x)=#{q∈L:q≤x}是L中小于等于x的元素个数。本文对某些常数cf>;0, m, α仅依赖于f且m<;α≤1+m,得到L(x)=cfx(ln ln x)m+O(x(ln x)α)。我们还用若干域的Dedekind ζ函数表示了与集合L相关的Dirichlet级数F(s)=∑n∈Ln−s。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quadratic twists of genus one curves
For a given irreducible and monic polynomial f(x)Z[x] of degree 4, we consider the quadratic twists by square-free integers q of the genus one quartic H:y2=f(x)Hq:qy2=f(x).
Let L denote the set of positive square-free integers q for which Hq is everywhere locally solvable. For a real number x, let L(x)=#{qL:qx} be the number of elements in L that are less than or equal to x.
In this paper, we obtain thatL(x)=cfx(lnx)m+O(x(lnx)α) for some constants cf>0, m and α only depending on f such that m<α1+m. We also express the Dirichlet series F(s)=nLns associated to the set L in terms of Dedekind zeta functions of certain number fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Number Theory
Journal of Number Theory 数学-数学
CiteScore
1.30
自引率
14.30%
发文量
122
审稿时长
16 weeks
期刊介绍: The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field. The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory. Starting in May 2019, JNT will have a new format with 3 sections: JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access. JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions. Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信