{"title":"一属曲线的二次扭转","authors":"Lukas Novak","doi":"10.1016/j.jnt.2025.02.001","DOIUrl":null,"url":null,"abstract":"<div><div>For a given irreducible and monic polynomial <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>∈</mo><mi>Z</mi><mo>[</mo><mi>x</mi><mo>]</mo></math></span> of degree 4, we consider the quadratic twists by square-free integers <em>q</em> of the genus one quartic <span><math><mi>H</mi><mspace></mspace><mo>:</mo><mspace></mspace><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span><span><span><span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>q</mi></mrow></msub><mspace></mspace><mo>:</mo><mspace></mspace><mi>q</mi><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>.</mo></math></span></span></span></div><div>Let <em>L</em> denote the set of positive square-free integers <em>q</em> for which <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> is everywhere locally solvable. For a real number <em>x</em>, let <span><math><mi>L</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>#</mi><mo>{</mo><mi>q</mi><mo>∈</mo><mi>L</mi><mo>:</mo><mspace></mspace><mi>q</mi><mo>≤</mo><mi>x</mi><mo>}</mo></math></span> be the number of elements in <em>L</em> that are less than or equal to <em>x</em>.</div><div>In this paper, we obtain that<span><span><span><math><mi>L</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>f</mi></mrow></msub><mfrac><mrow><mi>x</mi></mrow><mrow><msup><mrow><mo>(</mo><mi>ln</mi><mo></mo><mi>x</mi><mo>)</mo></mrow><mrow><mi>m</mi></mrow></msup></mrow></mfrac><mo>+</mo><mi>O</mi><mrow><mo>(</mo><mfrac><mrow><mi>x</mi></mrow><mrow><msup><mrow><mo>(</mo><mi>ln</mi><mo></mo><mi>x</mi><mo>)</mo></mrow><mrow><mi>α</mi></mrow></msup></mrow></mfrac><mo>)</mo></mrow></math></span></span></span> for some constants <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>></mo><mn>0</mn></math></span>, <em>m</em> and <em>α</em> only depending on <em>f</em> such that <span><math><mi>m</mi><mo><</mo><mi>α</mi><mo>≤</mo><mn>1</mn><mo>+</mo><mi>m</mi></math></span>. We also express the Dirichlet series <span><math><mi>F</mi><mo>(</mo><mi>s</mi><mo>)</mo><mo>=</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>∈</mo><mi>L</mi></mrow></msub><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mi>s</mi></mrow></msup></math></span> associated to the set <em>L</em> in terms of Dedekind zeta functions of certain number fields.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"276 ","pages":"Pages 1-22"},"PeriodicalIF":0.6000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quadratic twists of genus one curves\",\"authors\":\"Lukas Novak\",\"doi\":\"10.1016/j.jnt.2025.02.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For a given irreducible and monic polynomial <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>∈</mo><mi>Z</mi><mo>[</mo><mi>x</mi><mo>]</mo></math></span> of degree 4, we consider the quadratic twists by square-free integers <em>q</em> of the genus one quartic <span><math><mi>H</mi><mspace></mspace><mo>:</mo><mspace></mspace><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span><span><span><span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>q</mi></mrow></msub><mspace></mspace><mo>:</mo><mspace></mspace><mi>q</mi><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>.</mo></math></span></span></span></div><div>Let <em>L</em> denote the set of positive square-free integers <em>q</em> for which <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> is everywhere locally solvable. For a real number <em>x</em>, let <span><math><mi>L</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>#</mi><mo>{</mo><mi>q</mi><mo>∈</mo><mi>L</mi><mo>:</mo><mspace></mspace><mi>q</mi><mo>≤</mo><mi>x</mi><mo>}</mo></math></span> be the number of elements in <em>L</em> that are less than or equal to <em>x</em>.</div><div>In this paper, we obtain that<span><span><span><math><mi>L</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>f</mi></mrow></msub><mfrac><mrow><mi>x</mi></mrow><mrow><msup><mrow><mo>(</mo><mi>ln</mi><mo></mo><mi>x</mi><mo>)</mo></mrow><mrow><mi>m</mi></mrow></msup></mrow></mfrac><mo>+</mo><mi>O</mi><mrow><mo>(</mo><mfrac><mrow><mi>x</mi></mrow><mrow><msup><mrow><mo>(</mo><mi>ln</mi><mo></mo><mi>x</mi><mo>)</mo></mrow><mrow><mi>α</mi></mrow></msup></mrow></mfrac><mo>)</mo></mrow></math></span></span></span> for some constants <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>></mo><mn>0</mn></math></span>, <em>m</em> and <em>α</em> only depending on <em>f</em> such that <span><math><mi>m</mi><mo><</mo><mi>α</mi><mo>≤</mo><mn>1</mn><mo>+</mo><mi>m</mi></math></span>. We also express the Dirichlet series <span><math><mi>F</mi><mo>(</mo><mi>s</mi><mo>)</mo><mo>=</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>∈</mo><mi>L</mi></mrow></msub><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mi>s</mi></mrow></msup></math></span> associated to the set <em>L</em> in terms of Dedekind zeta functions of certain number fields.</div></div>\",\"PeriodicalId\":50110,\"journal\":{\"name\":\"Journal of Number Theory\",\"volume\":\"276 \",\"pages\":\"Pages 1-22\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022314X25001027\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X25001027","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
For a given irreducible and monic polynomial of degree 4, we consider the quadratic twists by square-free integers q of the genus one quartic
Let L denote the set of positive square-free integers q for which is everywhere locally solvable. For a real number x, let be the number of elements in L that are less than or equal to x.
In this paper, we obtain that for some constants , m and α only depending on f such that . We also express the Dirichlet series associated to the set L in terms of Dedekind zeta functions of certain number fields.
期刊介绍:
The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field.
The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory.
Starting in May 2019, JNT will have a new format with 3 sections:
JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access.
JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions.
Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.