机器学习优化zr掺杂CeO2电催化剂的过电位以提高OER效率

IF 5.3 3区 工程技术 Q2 ENERGY & FUELS
Wajid Sajjad, Eman A Ayob, Abdul Sami, Farhan Zafar,  Saifullah, Naeem Akhtar*, Muhammad Ali Khan*, Muhammad Usman Ur Rehman, Rana Abdul Shakoor* and Mohammed A. Amin, 
{"title":"机器学习优化zr掺杂CeO2电催化剂的过电位以提高OER效率","authors":"Wajid Sajjad,&nbsp;Eman A Ayob,&nbsp;Abdul Sami,&nbsp;Farhan Zafar,&nbsp; Saifullah,&nbsp;Naeem Akhtar*,&nbsp;Muhammad Ali Khan*,&nbsp;Muhammad Usman Ur Rehman,&nbsp;Rana Abdul Shakoor* and Mohammed A. Amin,&nbsp;","doi":"10.1021/acs.energyfuels.5c0146810.1021/acs.energyfuels.5c01468","DOIUrl":null,"url":null,"abstract":"<p >Despite a wide range of noble metal-free electrocatalysts having been developed for efficient oxygen evolution reactions (OERs) to date, there is a need to optimize (i.e., dopant concentration, material deposited, drying time, etc.) these electrocatalysts to get the best overpotential. Thus, herein, we have studied the impact of Zr doping concentration (1, 2, 3, 4, and 5%) in CeO<sub>2</sub> along with experimental condition optimization as a function of overpotential through machine learning (ML) to design a highly efficient OER electrocatalyst. Our results demonstrated that the ML-optimized 3% Zr-doped CeO<sub>2</sub> electrode showed maximum electrocatalytic activity with lower onset potential (1.39 V vs RHE), overpotential (380 mV at 10 mA cm<sup>–2</sup>), and Tafel slope (85.7 mV dec<sup>–1</sup>) compared to CeO<sub>2</sub> doped with various concentrations of Zr. Additionally, ML-optimized 3% Zr-doped CeO<sub>2</sub> has shown better stability with 84% current density retention after 48 h, thus suggesting the reliability of our designed system.</p>","PeriodicalId":35,"journal":{"name":"Energy & Fuels","volume":"39 18","pages":"8652–8661 8652–8661"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning-Optimized Overpotential in Zr-Doped CeO2 Electrocatalysts for Enhanced OER Efficiency\",\"authors\":\"Wajid Sajjad,&nbsp;Eman A Ayob,&nbsp;Abdul Sami,&nbsp;Farhan Zafar,&nbsp; Saifullah,&nbsp;Naeem Akhtar*,&nbsp;Muhammad Ali Khan*,&nbsp;Muhammad Usman Ur Rehman,&nbsp;Rana Abdul Shakoor* and Mohammed A. Amin,&nbsp;\",\"doi\":\"10.1021/acs.energyfuels.5c0146810.1021/acs.energyfuels.5c01468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Despite a wide range of noble metal-free electrocatalysts having been developed for efficient oxygen evolution reactions (OERs) to date, there is a need to optimize (i.e., dopant concentration, material deposited, drying time, etc.) these electrocatalysts to get the best overpotential. Thus, herein, we have studied the impact of Zr doping concentration (1, 2, 3, 4, and 5%) in CeO<sub>2</sub> along with experimental condition optimization as a function of overpotential through machine learning (ML) to design a highly efficient OER electrocatalyst. Our results demonstrated that the ML-optimized 3% Zr-doped CeO<sub>2</sub> electrode showed maximum electrocatalytic activity with lower onset potential (1.39 V vs RHE), overpotential (380 mV at 10 mA cm<sup>–2</sup>), and Tafel slope (85.7 mV dec<sup>–1</sup>) compared to CeO<sub>2</sub> doped with various concentrations of Zr. Additionally, ML-optimized 3% Zr-doped CeO<sub>2</sub> has shown better stability with 84% current density retention after 48 h, thus suggesting the reliability of our designed system.</p>\",\"PeriodicalId\":35,\"journal\":{\"name\":\"Energy & Fuels\",\"volume\":\"39 18\",\"pages\":\"8652–8661 8652–8661\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy & Fuels\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.energyfuels.5c01468\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Fuels","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.energyfuels.5c01468","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

尽管迄今为止已经开发了各种用于高效析氧反应(OERs)的无贵金属电催化剂,但仍需要对这些电催化剂进行优化(即掺杂剂浓度、沉积材料、干燥时间等)以获得最佳过电位。因此,我们研究了Zr掺杂浓度(1、2、3、4和5%)对CeO2的影响,并通过机器学习(ML)优化实验条件作为过电位的函数,设计了高效的OER电催化剂。我们的研究结果表明,与掺杂不同浓度Zr的CeO2相比,ml优化的3% Zr掺杂CeO2电极具有较低的起始电位(1.39 V vs RHE)、过电位(380 mV at 10 mA cm-2)和Tafel斜率(85.7 mV dec1)的最大电催化活性。此外,ml优化后的3% zr掺杂CeO2具有更好的稳定性,48 h后电流密度保留率为84%,表明了我们设计的体系的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Machine Learning-Optimized Overpotential in Zr-Doped CeO2 Electrocatalysts for Enhanced OER Efficiency

Machine Learning-Optimized Overpotential in Zr-Doped CeO2 Electrocatalysts for Enhanced OER Efficiency

Despite a wide range of noble metal-free electrocatalysts having been developed for efficient oxygen evolution reactions (OERs) to date, there is a need to optimize (i.e., dopant concentration, material deposited, drying time, etc.) these electrocatalysts to get the best overpotential. Thus, herein, we have studied the impact of Zr doping concentration (1, 2, 3, 4, and 5%) in CeO2 along with experimental condition optimization as a function of overpotential through machine learning (ML) to design a highly efficient OER electrocatalyst. Our results demonstrated that the ML-optimized 3% Zr-doped CeO2 electrode showed maximum electrocatalytic activity with lower onset potential (1.39 V vs RHE), overpotential (380 mV at 10 mA cm–2), and Tafel slope (85.7 mV dec–1) compared to CeO2 doped with various concentrations of Zr. Additionally, ML-optimized 3% Zr-doped CeO2 has shown better stability with 84% current density retention after 48 h, thus suggesting the reliability of our designed system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy & Fuels
Energy & Fuels 工程技术-工程:化工
CiteScore
9.20
自引率
13.20%
发文量
1101
审稿时长
2.1 months
期刊介绍: Energy & Fuels publishes reports of research in the technical area defined by the intersection of the disciplines of chemistry and chemical engineering and the application domain of non-nuclear energy and fuels. This includes research directed at the formation of, exploration for, and production of fossil fuels and biomass; the properties and structure or molecular composition of both raw fuels and refined products; the chemistry involved in the processing and utilization of fuels; fuel cells and their applications; and the analytical and instrumental techniques used in investigations of the foregoing areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信