{"title":"函数加权邻接矩阵谱半径的极值结果","authors":"Xueliang Li, Ruiling Zheng","doi":"10.1016/j.dam.2025.04.060","DOIUrl":null,"url":null,"abstract":"<div><div>For a graph <span><math><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><mi>V</mi></mrow></math></span>, denote by <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> the degree of vertex <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>. Let <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>></mo><mn>0</mn></mrow></math></span> be a <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-function in <span><math><msup><mrow><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> and be symmetric in <span><math><mi>x</mi></math></span> and <span><math><mi>y</mi></math></span>. If for every <span><math><mover><mrow><mi>x</mi></mrow><mrow><mo>̄</mo></mrow></mover></math></span> such that <span><math><mrow><mrow><mo>{</mo><mover><mrow><mi>x</mi></mrow><mrow><mo>̄</mo></mrow></mover><mo>}</mo></mrow><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>≠</mo><mo>∅</mo></mrow></math></span>, then <span><math><mrow><msubsup><mrow><mi>f</mi></mrow><mrow><mi>x</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mrow><mo>(</mo><mover><mrow><mi>x</mi></mrow><mrow><mo>̄</mo></mrow></mover><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>≥</mo><mn>0</mn></mrow></math></span> (resp. <span><math><mrow><msubsup><mrow><mi>f</mi></mrow><mrow><mi>x</mi></mrow><mrow><mo>′</mo><mo>′</mo></mrow></msubsup><mrow><mo>(</mo><mover><mrow><mi>x</mi></mrow><mrow><mo>̄</mo></mrow></mover><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>≥</mo><mn>0</mn></mrow></math></span> ) for all <span><math><mrow><mrow><mo>(</mo><mover><mrow><mi>x</mi></mrow><mrow><mo>̄</mo></mrow></mover><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>∈</mo><msup><mrow><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>, we say <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span> is increasing (resp. convex) in variable <span><math><mi>x</mi></math></span>. The function-weighted adjacency matrix <span><math><mrow><msub><mrow><mi>A</mi></mrow><mrow><mi>f</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> of a graph <span><math><mi>G</mi></math></span> is a square matrix, where the <span><math><mrow><mo>(</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>)</mo></mrow></math></span>-entry is equal to <span><math><mrow><mi>f</mi><mrow><mo>(</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> if the vertices <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span> are adjacent and 0 otherwise.</div><div>In this paper, we consider the unimodality of the principal eigenvector of the path <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and characterize the tree on <span><math><mi>n</mi></math></span> vertices with the smallest <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>f</mi></mrow></msub></math></span>-spectral radius of <span><math><mi>G</mi></math></span> under the condition that <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>></mo><mn>0</mn></mrow></math></span> is increasing and convex in variable <span><math><mi>x</mi></math></span>. We also obtain the unicyclic graph on <span><math><mi>n</mi></math></span> vertices with the largest <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>f</mi></mrow></msub></math></span>-spectral radius of <span><math><mi>G</mi></math></span> under the same condition.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"373 ","pages":"Pages 204-216"},"PeriodicalIF":1.0000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extremal results on the spectral radius of function-weighted adjacency matrices\",\"authors\":\"Xueliang Li, Ruiling Zheng\",\"doi\":\"10.1016/j.dam.2025.04.060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For a graph <span><math><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><mi>V</mi></mrow></math></span>, denote by <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> the degree of vertex <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>. Let <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>></mo><mn>0</mn></mrow></math></span> be a <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-function in <span><math><msup><mrow><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> and be symmetric in <span><math><mi>x</mi></math></span> and <span><math><mi>y</mi></math></span>. If for every <span><math><mover><mrow><mi>x</mi></mrow><mrow><mo>̄</mo></mrow></mover></math></span> such that <span><math><mrow><mrow><mo>{</mo><mover><mrow><mi>x</mi></mrow><mrow><mo>̄</mo></mrow></mover><mo>}</mo></mrow><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>≠</mo><mo>∅</mo></mrow></math></span>, then <span><math><mrow><msubsup><mrow><mi>f</mi></mrow><mrow><mi>x</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mrow><mo>(</mo><mover><mrow><mi>x</mi></mrow><mrow><mo>̄</mo></mrow></mover><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>≥</mo><mn>0</mn></mrow></math></span> (resp. <span><math><mrow><msubsup><mrow><mi>f</mi></mrow><mrow><mi>x</mi></mrow><mrow><mo>′</mo><mo>′</mo></mrow></msubsup><mrow><mo>(</mo><mover><mrow><mi>x</mi></mrow><mrow><mo>̄</mo></mrow></mover><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>≥</mo><mn>0</mn></mrow></math></span> ) for all <span><math><mrow><mrow><mo>(</mo><mover><mrow><mi>x</mi></mrow><mrow><mo>̄</mo></mrow></mover><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>∈</mo><msup><mrow><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>, we say <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span> is increasing (resp. convex) in variable <span><math><mi>x</mi></math></span>. The function-weighted adjacency matrix <span><math><mrow><msub><mrow><mi>A</mi></mrow><mrow><mi>f</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> of a graph <span><math><mi>G</mi></math></span> is a square matrix, where the <span><math><mrow><mo>(</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>)</mo></mrow></math></span>-entry is equal to <span><math><mrow><mi>f</mi><mrow><mo>(</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> if the vertices <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span> are adjacent and 0 otherwise.</div><div>In this paper, we consider the unimodality of the principal eigenvector of the path <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and characterize the tree on <span><math><mi>n</mi></math></span> vertices with the smallest <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>f</mi></mrow></msub></math></span>-spectral radius of <span><math><mi>G</mi></math></span> under the condition that <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>></mo><mn>0</mn></mrow></math></span> is increasing and convex in variable <span><math><mi>x</mi></math></span>. We also obtain the unicyclic graph on <span><math><mi>n</mi></math></span> vertices with the largest <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>f</mi></mrow></msub></math></span>-spectral radius of <span><math><mi>G</mi></math></span> under the same condition.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"373 \",\"pages\":\"Pages 204-216\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25002367\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25002367","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Extremal results on the spectral radius of function-weighted adjacency matrices
For a graph and , denote by the degree of vertex . Let be a -function in and be symmetric in and . If for every such that , then (resp. ) for all , we say is increasing (resp. convex) in variable . The function-weighted adjacency matrix of a graph is a square matrix, where the -entry is equal to if the vertices and are adjacent and 0 otherwise.
In this paper, we consider the unimodality of the principal eigenvector of the path and characterize the tree on vertices with the smallest -spectral radius of under the condition that is increasing and convex in variable . We also obtain the unicyclic graph on vertices with the largest -spectral radius of under the same condition.
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.