函数加权邻接矩阵谱半径的极值结果

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Xueliang Li, Ruiling Zheng
{"title":"函数加权邻接矩阵谱半径的极值结果","authors":"Xueliang Li,&nbsp;Ruiling Zheng","doi":"10.1016/j.dam.2025.04.060","DOIUrl":null,"url":null,"abstract":"<div><div>For a graph <span><math><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><mi>V</mi></mrow></math></span>, denote by <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> the degree of vertex <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>. Let <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>&gt;</mo><mn>0</mn></mrow></math></span> be a <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-function in <span><math><msup><mrow><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> and be symmetric in <span><math><mi>x</mi></math></span> and <span><math><mi>y</mi></math></span>. If for every <span><math><mover><mrow><mi>x</mi></mrow><mrow><mo>̄</mo></mrow></mover></math></span> such that <span><math><mrow><mrow><mo>{</mo><mover><mrow><mi>x</mi></mrow><mrow><mo>̄</mo></mrow></mover><mo>}</mo></mrow><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>≠</mo><mo>∅</mo></mrow></math></span>, then <span><math><mrow><msubsup><mrow><mi>f</mi></mrow><mrow><mi>x</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mrow><mo>(</mo><mover><mrow><mi>x</mi></mrow><mrow><mo>̄</mo></mrow></mover><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>≥</mo><mn>0</mn></mrow></math></span> (resp. <span><math><mrow><msubsup><mrow><mi>f</mi></mrow><mrow><mi>x</mi></mrow><mrow><mo>′</mo><mo>′</mo></mrow></msubsup><mrow><mo>(</mo><mover><mrow><mi>x</mi></mrow><mrow><mo>̄</mo></mrow></mover><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>≥</mo><mn>0</mn></mrow></math></span> ) for all <span><math><mrow><mrow><mo>(</mo><mover><mrow><mi>x</mi></mrow><mrow><mo>̄</mo></mrow></mover><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>∈</mo><msup><mrow><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>, we say <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span> is increasing (resp. convex) in variable <span><math><mi>x</mi></math></span>. The function-weighted adjacency matrix <span><math><mrow><msub><mrow><mi>A</mi></mrow><mrow><mi>f</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> of a graph <span><math><mi>G</mi></math></span> is a square matrix, where the <span><math><mrow><mo>(</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>)</mo></mrow></math></span>-entry is equal to <span><math><mrow><mi>f</mi><mrow><mo>(</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> if the vertices <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span> are adjacent and 0 otherwise.</div><div>In this paper, we consider the unimodality of the principal eigenvector of the path <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and characterize the tree on <span><math><mi>n</mi></math></span> vertices with the smallest <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>f</mi></mrow></msub></math></span>-spectral radius of <span><math><mi>G</mi></math></span> under the condition that <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>&gt;</mo><mn>0</mn></mrow></math></span> is increasing and convex in variable <span><math><mi>x</mi></math></span>. We also obtain the unicyclic graph on <span><math><mi>n</mi></math></span> vertices with the largest <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>f</mi></mrow></msub></math></span>-spectral radius of <span><math><mi>G</mi></math></span> under the same condition.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"373 ","pages":"Pages 204-216"},"PeriodicalIF":1.0000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extremal results on the spectral radius of function-weighted adjacency matrices\",\"authors\":\"Xueliang Li,&nbsp;Ruiling Zheng\",\"doi\":\"10.1016/j.dam.2025.04.060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For a graph <span><math><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><mi>V</mi></mrow></math></span>, denote by <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> the degree of vertex <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>. Let <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>&gt;</mo><mn>0</mn></mrow></math></span> be a <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-function in <span><math><msup><mrow><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> and be symmetric in <span><math><mi>x</mi></math></span> and <span><math><mi>y</mi></math></span>. If for every <span><math><mover><mrow><mi>x</mi></mrow><mrow><mo>̄</mo></mrow></mover></math></span> such that <span><math><mrow><mrow><mo>{</mo><mover><mrow><mi>x</mi></mrow><mrow><mo>̄</mo></mrow></mover><mo>}</mo></mrow><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>≠</mo><mo>∅</mo></mrow></math></span>, then <span><math><mrow><msubsup><mrow><mi>f</mi></mrow><mrow><mi>x</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mrow><mo>(</mo><mover><mrow><mi>x</mi></mrow><mrow><mo>̄</mo></mrow></mover><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>≥</mo><mn>0</mn></mrow></math></span> (resp. <span><math><mrow><msubsup><mrow><mi>f</mi></mrow><mrow><mi>x</mi></mrow><mrow><mo>′</mo><mo>′</mo></mrow></msubsup><mrow><mo>(</mo><mover><mrow><mi>x</mi></mrow><mrow><mo>̄</mo></mrow></mover><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>≥</mo><mn>0</mn></mrow></math></span> ) for all <span><math><mrow><mrow><mo>(</mo><mover><mrow><mi>x</mi></mrow><mrow><mo>̄</mo></mrow></mover><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>∈</mo><msup><mrow><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>, we say <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span> is increasing (resp. convex) in variable <span><math><mi>x</mi></math></span>. The function-weighted adjacency matrix <span><math><mrow><msub><mrow><mi>A</mi></mrow><mrow><mi>f</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> of a graph <span><math><mi>G</mi></math></span> is a square matrix, where the <span><math><mrow><mo>(</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>)</mo></mrow></math></span>-entry is equal to <span><math><mrow><mi>f</mi><mrow><mo>(</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> if the vertices <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span> are adjacent and 0 otherwise.</div><div>In this paper, we consider the unimodality of the principal eigenvector of the path <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and characterize the tree on <span><math><mi>n</mi></math></span> vertices with the smallest <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>f</mi></mrow></msub></math></span>-spectral radius of <span><math><mi>G</mi></math></span> under the condition that <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>&gt;</mo><mn>0</mn></mrow></math></span> is increasing and convex in variable <span><math><mi>x</mi></math></span>. We also obtain the unicyclic graph on <span><math><mi>n</mi></math></span> vertices with the largest <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>f</mi></mrow></msub></math></span>-spectral radius of <span><math><mi>G</mi></math></span> under the same condition.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"373 \",\"pages\":\"Pages 204-216\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25002367\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25002367","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

对于图G=(V,E)且vi∈V,用di表示顶点vi的度数。设f(x,y)>;0是(R+)2中的一个c2函数,且在x和y中对称。若对每一个x′使{x′}×R+≠∅,则fx′(x′,y)≥0 (p. 0)。fx”(x̄y)≥0)所有(x̄y)∈(R +) 2、我们说f (x, y)增加(分别地。图G的函数加权邻接矩阵Af(G)是一个方阵,如果顶点vi和vj相邻,则(i,j)项等于f(di,dj),否则为0。本文考虑了路径Pn的主特征向量的单模性,在f(x,y)>;0在变量x中递增且为凸的条件下,刻画了n个顶点上G的af谱半径最小的树,并得到了相同条件下n个顶点上G的af谱半径最大的单环图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extremal results on the spectral radius of function-weighted adjacency matrices
For a graph G=(V,E) and viV, denote by di the degree of vertex vi. Let f(x,y)>0 be a C2-function in (R+)2 and be symmetric in x and y. If for every x̄ such that {x̄}×R+, then fx(x̄,y)0 (resp. fx(x̄,y)0 ) for all (x̄,y)(R+)2, we say f(x,y) is increasing (resp. convex) in variable x. The function-weighted adjacency matrix Af(G) of a graph G is a square matrix, where the (i,j)-entry is equal to f(di,dj) if the vertices vi and vj are adjacent and 0 otherwise.
In this paper, we consider the unimodality of the principal eigenvector of the path Pn and characterize the tree on n vertices with the smallest Af-spectral radius of G under the condition that f(x,y)>0 is increasing and convex in variable x. We also obtain the unicyclic graph on n vertices with the largest Af-spectral radius of G under the same condition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信