溶液法掺杂钴增强p型NiO薄膜晶体管性能

IF 2.7 Q2 PHYSICS, CONDENSED MATTER
Yerim Lee , Tae-Gyu Hwang , Won-Ju Cho , Khang June Lee , Hamin Park
{"title":"溶液法掺杂钴增强p型NiO薄膜晶体管性能","authors":"Yerim Lee ,&nbsp;Tae-Gyu Hwang ,&nbsp;Won-Ju Cho ,&nbsp;Khang June Lee ,&nbsp;Hamin Park","doi":"10.1016/j.micrna.2025.208196","DOIUrl":null,"url":null,"abstract":"<div><div>Oxide semiconductors have become key materials in electronic applications. However, the electrical performance of p-type oxides remains inferior to that of n-type oxides, which is a critical limitation that hinders the application of complementary metal–oxide–semiconductor (CMOS) based on oxide semiconductors. Therefore, enhancing the electrical performance of p-type oxide thin-film transistors (TFTs) is crucial to achieve the performance standards required for CMOS applications. Herein, we report solution-processed p-type NiO TFTs with an enhanced field-effect hole mobility (0.32 cm<sup>2</sup> V<sup>−1</sup> s<sup>−1</sup>) and on–off current ratio (3.3 × 10<sup>3</sup>), which have been achieved by optimizing the thermal annealing and cobalt doping parameters. An annealing temperature of 500 °C and a cobalt doping concentration of 10 at.% provide the highest hole mobility and on–off current ratio. The enhancement mechanism in the p-type NiO channel is analyzed by X-ray photoelectron spectroscopy, X-ray diffraction, and ultraviolet–visible spectroscopy. The spectroscopic analysis reveals the effect of the characteristics of the NiO thin films, such as the energy bandgap, crystallinity, and Ni–O bonding characteristics, on the electrical properties of the p-type NiO TFTs. Our findings provide insights for further improving the electrical performance of p-type oxide semiconductors.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"205 ","pages":"Article 208196"},"PeriodicalIF":2.7000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solution-processed cobalt doping for performance enhancement of p-type NiO thin-film transistors\",\"authors\":\"Yerim Lee ,&nbsp;Tae-Gyu Hwang ,&nbsp;Won-Ju Cho ,&nbsp;Khang June Lee ,&nbsp;Hamin Park\",\"doi\":\"10.1016/j.micrna.2025.208196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Oxide semiconductors have become key materials in electronic applications. However, the electrical performance of p-type oxides remains inferior to that of n-type oxides, which is a critical limitation that hinders the application of complementary metal–oxide–semiconductor (CMOS) based on oxide semiconductors. Therefore, enhancing the electrical performance of p-type oxide thin-film transistors (TFTs) is crucial to achieve the performance standards required for CMOS applications. Herein, we report solution-processed p-type NiO TFTs with an enhanced field-effect hole mobility (0.32 cm<sup>2</sup> V<sup>−1</sup> s<sup>−1</sup>) and on–off current ratio (3.3 × 10<sup>3</sup>), which have been achieved by optimizing the thermal annealing and cobalt doping parameters. An annealing temperature of 500 °C and a cobalt doping concentration of 10 at.% provide the highest hole mobility and on–off current ratio. The enhancement mechanism in the p-type NiO channel is analyzed by X-ray photoelectron spectroscopy, X-ray diffraction, and ultraviolet–visible spectroscopy. The spectroscopic analysis reveals the effect of the characteristics of the NiO thin films, such as the energy bandgap, crystallinity, and Ni–O bonding characteristics, on the electrical properties of the p-type NiO TFTs. Our findings provide insights for further improving the electrical performance of p-type oxide semiconductors.</div></div>\",\"PeriodicalId\":100923,\"journal\":{\"name\":\"Micro and Nanostructures\",\"volume\":\"205 \",\"pages\":\"Article 208196\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nanostructures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773012325001256\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012325001256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

氧化物半导体已成为电子应用中的关键材料。然而,p型氧化物的电学性能仍然不如n型氧化物,这是阻碍基于氧化物半导体的互补金属氧化物半导体(CMOS)应用的关键限制。因此,提高p型氧化物薄膜晶体管(TFTs)的电性能对于达到CMOS应用所需的性能标准至关重要。本文中,我们报道了通过优化热退火和钴掺杂参数,溶液处理的p型NiO tft具有增强的场效应空穴迁移率(0.32 cm2 V−1 s−1)和通断电流比(3.3 × 103)。退火温度为500℃,钴掺杂浓度为10 at。%提供最高的空穴迁移率和通断电流比。利用x射线光电子能谱、x射线衍射和紫外可见光谱分析了p型NiO通道中的增强机理。光谱分析揭示了NiO薄膜的能带隙、结晶度和Ni-O键合特性对p型NiO tft电学性能的影响。我们的发现为进一步提高p型氧化物半导体的电性能提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solution-processed cobalt doping for performance enhancement of p-type NiO thin-film transistors
Oxide semiconductors have become key materials in electronic applications. However, the electrical performance of p-type oxides remains inferior to that of n-type oxides, which is a critical limitation that hinders the application of complementary metal–oxide–semiconductor (CMOS) based on oxide semiconductors. Therefore, enhancing the electrical performance of p-type oxide thin-film transistors (TFTs) is crucial to achieve the performance standards required for CMOS applications. Herein, we report solution-processed p-type NiO TFTs with an enhanced field-effect hole mobility (0.32 cm2 V−1 s−1) and on–off current ratio (3.3 × 103), which have been achieved by optimizing the thermal annealing and cobalt doping parameters. An annealing temperature of 500 °C and a cobalt doping concentration of 10 at.% provide the highest hole mobility and on–off current ratio. The enhancement mechanism in the p-type NiO channel is analyzed by X-ray photoelectron spectroscopy, X-ray diffraction, and ultraviolet–visible spectroscopy. The spectroscopic analysis reveals the effect of the characteristics of the NiO thin films, such as the energy bandgap, crystallinity, and Ni–O bonding characteristics, on the electrical properties of the p-type NiO TFTs. Our findings provide insights for further improving the electrical performance of p-type oxide semiconductors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信