随后对层状双氢氧化物/金属-有机骨架进行硫化和磷化,合成了具有高速率和高面积超级电容器性能的新型CoMnOxSyPz纳米片

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL
Jinping Zou , Dapeng Luo , Wenyao Li , Hongxiang Chen , Zhaohui Wei , Xiaoyun Ye , Xiaochun Wen , Li-An Ma
{"title":"随后对层状双氢氧化物/金属-有机骨架进行硫化和磷化,合成了具有高速率和高面积超级电容器性能的新型CoMnOxSyPz纳米片","authors":"Jinping Zou ,&nbsp;Dapeng Luo ,&nbsp;Wenyao Li ,&nbsp;Hongxiang Chen ,&nbsp;Zhaohui Wei ,&nbsp;Xiaoyun Ye ,&nbsp;Xiaochun Wen ,&nbsp;Li-An Ma","doi":"10.1016/j.jpowsour.2025.237260","DOIUrl":null,"url":null,"abstract":"<div><div>Metal-organic frameworks (MOFs) derived porous nanosheets have sparked widespread interest due to their porosity structure and component tunability, making them promising candidates for energy-storage applications. However, the poor charge-transfer capability limits their supercapacitor capability. Here, we successfully synthesize CoMnO<sub><em>x</em></sub>S<sub><em>y</em></sub>P<sub><em>z</em></sub> porous nanosheet electrodes enriched with oxygen vacancies on the nickel-foam substrate using MOFs as self-sacrificial templates by sulfiding and phosphating. The resulting P-doping and abundant oxygen-vacancy-induced active sites enhance the charge-transfer capability significantly, as indicated by the low charge-transfer impedance ∼0.11 Ω, much lower than that of CoMn-ZIF and CoMnO<sub><em>x</em></sub>S<sub><em>y</em></sub>. Consequently, CoMnO<sub><em>x</em></sub>S<sub><em>y</em></sub>P<sub><em>z</em></sub> electrode exhibits a high areal capacitance (9.83 F cm<sup>−2</sup> at 8 mA cm<sup>−2</sup>), 5.85 and 1.48 times that in CoMn-ZIF and CoMnO<sub><em>x</em></sub>S<sub><em>y</em></sub>, respectively, with a satisfactory rate of 71.7 % at 50 mA cm<sup>−2</sup>. Notably, the asymmetric supercapacitor (ASC) achieves the highest energy density (0.95 mWh) with a power density of 3.2 mW cm<sup>−2</sup>, and the maximum power density (40 mW cm<sup>−2</sup>) with an energy density of 0.57 mWh⋅cm<sup>−2</sup>. Furthermore, excellent stability is realized in ASC, up to 90 % during 7000 cycles at 16 mA cm<sup>−2</sup>. Our results reveal that introducing P, S, and O vacancies by sulfiding and phosphatizing could be an effective strategy to improve the supercapacitor performance of the MOF-derived nanosheet.</div></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":"646 ","pages":"Article 237260"},"PeriodicalIF":8.1000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sulfiding and phosphating the layered double hydroxide/metal-organic-framework subsequently to synthesize novel CoMnOxSyPz nanosheets with high-rate and high-areal supercapacitor performance\",\"authors\":\"Jinping Zou ,&nbsp;Dapeng Luo ,&nbsp;Wenyao Li ,&nbsp;Hongxiang Chen ,&nbsp;Zhaohui Wei ,&nbsp;Xiaoyun Ye ,&nbsp;Xiaochun Wen ,&nbsp;Li-An Ma\",\"doi\":\"10.1016/j.jpowsour.2025.237260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Metal-organic frameworks (MOFs) derived porous nanosheets have sparked widespread interest due to their porosity structure and component tunability, making them promising candidates for energy-storage applications. However, the poor charge-transfer capability limits their supercapacitor capability. Here, we successfully synthesize CoMnO<sub><em>x</em></sub>S<sub><em>y</em></sub>P<sub><em>z</em></sub> porous nanosheet electrodes enriched with oxygen vacancies on the nickel-foam substrate using MOFs as self-sacrificial templates by sulfiding and phosphating. The resulting P-doping and abundant oxygen-vacancy-induced active sites enhance the charge-transfer capability significantly, as indicated by the low charge-transfer impedance ∼0.11 Ω, much lower than that of CoMn-ZIF and CoMnO<sub><em>x</em></sub>S<sub><em>y</em></sub>. Consequently, CoMnO<sub><em>x</em></sub>S<sub><em>y</em></sub>P<sub><em>z</em></sub> electrode exhibits a high areal capacitance (9.83 F cm<sup>−2</sup> at 8 mA cm<sup>−2</sup>), 5.85 and 1.48 times that in CoMn-ZIF and CoMnO<sub><em>x</em></sub>S<sub><em>y</em></sub>, respectively, with a satisfactory rate of 71.7 % at 50 mA cm<sup>−2</sup>. Notably, the asymmetric supercapacitor (ASC) achieves the highest energy density (0.95 mWh) with a power density of 3.2 mW cm<sup>−2</sup>, and the maximum power density (40 mW cm<sup>−2</sup>) with an energy density of 0.57 mWh⋅cm<sup>−2</sup>. Furthermore, excellent stability is realized in ASC, up to 90 % during 7000 cycles at 16 mA cm<sup>−2</sup>. Our results reveal that introducing P, S, and O vacancies by sulfiding and phosphatizing could be an effective strategy to improve the supercapacitor performance of the MOF-derived nanosheet.</div></div>\",\"PeriodicalId\":377,\"journal\":{\"name\":\"Journal of Power Sources\",\"volume\":\"646 \",\"pages\":\"Article 237260\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Power Sources\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378775325010961\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775325010961","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

金属有机框架(mof)衍生的多孔纳米片由于其孔隙结构和组件可调性而引起了广泛的兴趣,使其成为储能应用的有希望的候选者。然而,较差的电荷转移能力限制了它们的超级电容器性能。本研究以mof为自牺牲模板,通过硫化和磷化,在泡沫镍基体上成功合成了CoMnOxSyPz富氧空位多孔纳米片电极。由此产生的p掺杂和丰富的氧空位诱导活性位点显著增强了电荷转移能力,电荷转移阻抗低~ 0.11 Ω,远低于comm - zif和CoMnOxSy。因此,CoMnOxSyPz电极在8 mA cm−2时具有较高的面电容(9.83 F cm−2),分别是con - zif和CoMnOxSy的5.85和1.48倍,在50 mA cm−2时满意率为71.7%。值得注意的是,非对称超级电容器(ASC)的最高能量密度为0.95 mWh,能量密度为3.2 mW·cm−2,最大功率密度为40 mW·cm−2,能量密度为0.57 mWh·cm−2。此外,在ASC中实现了优异的稳定性,在16ma cm−2下,在7000次循环中高达90%。我们的研究结果表明,通过硫化和磷化来引入P、S和O空位可能是提高mof衍生纳米片超级电容器性能的有效策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sulfiding and phosphating the layered double hydroxide/metal-organic-framework subsequently to synthesize novel CoMnOxSyPz nanosheets with high-rate and high-areal supercapacitor performance
Metal-organic frameworks (MOFs) derived porous nanosheets have sparked widespread interest due to their porosity structure and component tunability, making them promising candidates for energy-storage applications. However, the poor charge-transfer capability limits their supercapacitor capability. Here, we successfully synthesize CoMnOxSyPz porous nanosheet electrodes enriched with oxygen vacancies on the nickel-foam substrate using MOFs as self-sacrificial templates by sulfiding and phosphating. The resulting P-doping and abundant oxygen-vacancy-induced active sites enhance the charge-transfer capability significantly, as indicated by the low charge-transfer impedance ∼0.11 Ω, much lower than that of CoMn-ZIF and CoMnOxSy. Consequently, CoMnOxSyPz electrode exhibits a high areal capacitance (9.83 F cm−2 at 8 mA cm−2), 5.85 and 1.48 times that in CoMn-ZIF and CoMnOxSy, respectively, with a satisfactory rate of 71.7 % at 50 mA cm−2. Notably, the asymmetric supercapacitor (ASC) achieves the highest energy density (0.95 mWh) with a power density of 3.2 mW cm−2, and the maximum power density (40 mW cm−2) with an energy density of 0.57 mWh⋅cm−2. Furthermore, excellent stability is realized in ASC, up to 90 % during 7000 cycles at 16 mA cm−2. Our results reveal that introducing P, S, and O vacancies by sulfiding and phosphatizing could be an effective strategy to improve the supercapacitor performance of the MOF-derived nanosheet.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Power Sources
Journal of Power Sources 工程技术-电化学
CiteScore
16.40
自引率
6.50%
发文量
1249
审稿时长
36 days
期刊介绍: The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells. Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include: • Portable electronics • Electric and Hybrid Electric Vehicles • Uninterruptible Power Supply (UPS) systems • Storage of renewable energy • Satellites and deep space probes • Boats and ships, drones and aircrafts • Wearable energy storage systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信