Priscila Costa Nascimento , Monika Topel , José Carlos Melo Vieira , Björn Laumert
{"title":"电动汽车对电力系统影响的缓解策略:一种综合概率方法","authors":"Priscila Costa Nascimento , Monika Topel , José Carlos Melo Vieira , Björn Laumert","doi":"10.1016/j.epsr.2025.111738","DOIUrl":null,"url":null,"abstract":"<div><div>Plug-in electric vehicles (PEVs) are a sustainable choice in response to electrification and decarbonization policies. Their widespread adoption poses challenges and opportunities, particularly for distribution systems (DSs). This study introduces a comprehensive probabilistic method to assist DS operators (DSOs) in infrastructure decision-making under uncoordinated PEV charging scenarios. Using real-world case studies and employing a Monte Carlo-based approach, it evaluates the impact of PEV charging on various aspects of DSs, including voltage magnitudes, imbalance, technical losses, and transformer loading. Mitigation strategies are explored through adjustments of substation transformer tap settings, modifications of no-load tap changers (NLTCs), and installation of low voltage regulators (LVRs). Results indicate that while transformer tap adjustments can improve voltage profiles, NLTC modifications may worsen overvoltage issues. In contrast, LVR implementation significantly reduces the number of customer units with voltage violations and lowers daily compensation costs. However, relying solely on LVRs may be insufficient when PEV penetration exceeds 35%. Moreover, their effectiveness in mitigating voltage imbalance diminishes due to independent LVR control and increased load. Still, economic analysis shows that LVRs can be financially viable even under these conditions. Sensitivity analyses highlight the critical influence of both PEV penetration levels and their spatial distribution within the DS in realistic PEV modeling simulations. In conclusion, this study proposes a probabilistic method to assist DSOs in the decision-making process of enhancing voltage regulation on DSs, comprehensively addressing losses, voltage imbalances, and loading in DSs impacted by PEV adoption.</div></div>","PeriodicalId":50547,"journal":{"name":"Electric Power Systems Research","volume":"247 ","pages":"Article 111738"},"PeriodicalIF":3.3000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mitigation strategies for electric vehicle impact on power systems: A comprehensive probabilistic method\",\"authors\":\"Priscila Costa Nascimento , Monika Topel , José Carlos Melo Vieira , Björn Laumert\",\"doi\":\"10.1016/j.epsr.2025.111738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Plug-in electric vehicles (PEVs) are a sustainable choice in response to electrification and decarbonization policies. Their widespread adoption poses challenges and opportunities, particularly for distribution systems (DSs). This study introduces a comprehensive probabilistic method to assist DS operators (DSOs) in infrastructure decision-making under uncoordinated PEV charging scenarios. Using real-world case studies and employing a Monte Carlo-based approach, it evaluates the impact of PEV charging on various aspects of DSs, including voltage magnitudes, imbalance, technical losses, and transformer loading. Mitigation strategies are explored through adjustments of substation transformer tap settings, modifications of no-load tap changers (NLTCs), and installation of low voltage regulators (LVRs). Results indicate that while transformer tap adjustments can improve voltage profiles, NLTC modifications may worsen overvoltage issues. In contrast, LVR implementation significantly reduces the number of customer units with voltage violations and lowers daily compensation costs. However, relying solely on LVRs may be insufficient when PEV penetration exceeds 35%. Moreover, their effectiveness in mitigating voltage imbalance diminishes due to independent LVR control and increased load. Still, economic analysis shows that LVRs can be financially viable even under these conditions. Sensitivity analyses highlight the critical influence of both PEV penetration levels and their spatial distribution within the DS in realistic PEV modeling simulations. In conclusion, this study proposes a probabilistic method to assist DSOs in the decision-making process of enhancing voltage regulation on DSs, comprehensively addressing losses, voltage imbalances, and loading in DSs impacted by PEV adoption.</div></div>\",\"PeriodicalId\":50547,\"journal\":{\"name\":\"Electric Power Systems Research\",\"volume\":\"247 \",\"pages\":\"Article 111738\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electric Power Systems Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S037877962500330X\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electric Power Systems Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037877962500330X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Mitigation strategies for electric vehicle impact on power systems: A comprehensive probabilistic method
Plug-in electric vehicles (PEVs) are a sustainable choice in response to electrification and decarbonization policies. Their widespread adoption poses challenges and opportunities, particularly for distribution systems (DSs). This study introduces a comprehensive probabilistic method to assist DS operators (DSOs) in infrastructure decision-making under uncoordinated PEV charging scenarios. Using real-world case studies and employing a Monte Carlo-based approach, it evaluates the impact of PEV charging on various aspects of DSs, including voltage magnitudes, imbalance, technical losses, and transformer loading. Mitigation strategies are explored through adjustments of substation transformer tap settings, modifications of no-load tap changers (NLTCs), and installation of low voltage regulators (LVRs). Results indicate that while transformer tap adjustments can improve voltage profiles, NLTC modifications may worsen overvoltage issues. In contrast, LVR implementation significantly reduces the number of customer units with voltage violations and lowers daily compensation costs. However, relying solely on LVRs may be insufficient when PEV penetration exceeds 35%. Moreover, their effectiveness in mitigating voltage imbalance diminishes due to independent LVR control and increased load. Still, economic analysis shows that LVRs can be financially viable even under these conditions. Sensitivity analyses highlight the critical influence of both PEV penetration levels and their spatial distribution within the DS in realistic PEV modeling simulations. In conclusion, this study proposes a probabilistic method to assist DSOs in the decision-making process of enhancing voltage regulation on DSs, comprehensively addressing losses, voltage imbalances, and loading in DSs impacted by PEV adoption.
期刊介绍:
Electric Power Systems Research is an international medium for the publication of original papers concerned with the generation, transmission, distribution and utilization of electrical energy. The journal aims at presenting important results of work in this field, whether in the form of applied research, development of new procedures or components, orginal application of existing knowledge or new designapproaches. The scope of Electric Power Systems Research is broad, encompassing all aspects of electric power systems. The following list of topics is not intended to be exhaustive, but rather to indicate topics that fall within the journal purview.
• Generation techniques ranging from advances in conventional electromechanical methods, through nuclear power generation, to renewable energy generation.
• Transmission, spanning the broad area from UHV (ac and dc) to network operation and protection, line routing and design.
• Substation work: equipment design, protection and control systems.
• Distribution techniques, equipment development, and smart grids.
• The utilization area from energy efficiency to distributed load levelling techniques.
• Systems studies including control techniques, planning, optimization methods, stability, security assessment and insulation coordination.