{"title":"低铅泄漏稳定钙钛矿太阳能电池的分子聚合策略","authors":"Qixin Zhuang, Zhiyuan Xu, Haiyun Li, Cong Zhang, Cheng Gong, Huaxin Wang, Xiong Li, Zhigang Zang","doi":"10.1126/sciadv.ado7318","DOIUrl":null,"url":null,"abstract":"<div >Lead leakage and stability are the main challenges for the commercialization of perovskite solar cells (PSCs). Here, we propose adding <i>N</i>,<i>N</i>′-bis(acryloyl)cystamine (BAC) to the perovskite precursor solution, which facilitates the formation of polymer BAC (PBAC) at the grain boundaries during the annealing process of films. The PBAC can effectively passivate the defects and reduce the risk of lead leakage. Consequently, the PBAC-modified PSCs achieve an efficiency of 25.53% (0.1 square centimeters) (certified efficiency of 25.24%) and 24.03% (1.0 square centimeters). Moreover, after 1500 hours of continuous maximum power point tracking under simulated AM 1.5 illumination and 2000 hours of exposure to damp heat conditions (85°C and 85% relative humidity), the device retains approximately 96 and 81% of its initial power conversion efficiency, respectively. In addition, PBAC can effectively reduce lead leakage by nearly 72% by immersing the PSCs in water for 480 minutes.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 19","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.ado7318","citationCount":"0","resultStr":"{\"title\":\"Molecular polymerization strategy for stable perovskite solar cells with low lead leakage\",\"authors\":\"Qixin Zhuang, Zhiyuan Xu, Haiyun Li, Cong Zhang, Cheng Gong, Huaxin Wang, Xiong Li, Zhigang Zang\",\"doi\":\"10.1126/sciadv.ado7318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Lead leakage and stability are the main challenges for the commercialization of perovskite solar cells (PSCs). Here, we propose adding <i>N</i>,<i>N</i>′-bis(acryloyl)cystamine (BAC) to the perovskite precursor solution, which facilitates the formation of polymer BAC (PBAC) at the grain boundaries during the annealing process of films. The PBAC can effectively passivate the defects and reduce the risk of lead leakage. Consequently, the PBAC-modified PSCs achieve an efficiency of 25.53% (0.1 square centimeters) (certified efficiency of 25.24%) and 24.03% (1.0 square centimeters). Moreover, after 1500 hours of continuous maximum power point tracking under simulated AM 1.5 illumination and 2000 hours of exposure to damp heat conditions (85°C and 85% relative humidity), the device retains approximately 96 and 81% of its initial power conversion efficiency, respectively. In addition, PBAC can effectively reduce lead leakage by nearly 72% by immersing the PSCs in water for 480 minutes.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 19\",\"pages\":\"\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.ado7318\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.ado7318\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.ado7318","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Molecular polymerization strategy for stable perovskite solar cells with low lead leakage
Lead leakage and stability are the main challenges for the commercialization of perovskite solar cells (PSCs). Here, we propose adding N,N′-bis(acryloyl)cystamine (BAC) to the perovskite precursor solution, which facilitates the formation of polymer BAC (PBAC) at the grain boundaries during the annealing process of films. The PBAC can effectively passivate the defects and reduce the risk of lead leakage. Consequently, the PBAC-modified PSCs achieve an efficiency of 25.53% (0.1 square centimeters) (certified efficiency of 25.24%) and 24.03% (1.0 square centimeters). Moreover, after 1500 hours of continuous maximum power point tracking under simulated AM 1.5 illumination and 2000 hours of exposure to damp heat conditions (85°C and 85% relative humidity), the device retains approximately 96 and 81% of its initial power conversion efficiency, respectively. In addition, PBAC can effectively reduce lead leakage by nearly 72% by immersing the PSCs in water for 480 minutes.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.