{"title":"使软模具制造具有悬垂的聚合物表面结构","authors":"Qingyang Sun, Tingyi “Leo” Liu","doi":"10.1021/acs.langmuir.5c00307","DOIUrl":null,"url":null,"abstract":"Surface structures with overhangs are ubiquitous in nature to offer vital functions, yet reproducing them for manufacturing is challenging due to mold interlock during demolding. Soft molds have been proposed to prevent interlock, but they risk stiction-caused collapsing because their intrinsic overhanging features are susceptible to strong intermolecular forces under the microscale. To address this, we model the relationship between overhang geometries and material properties, targeting a balanced relationship between flexibility and structural integrity. We then verify our model using polydimethylsiloxane (PDMS) molds with different moduli and geometries, as well as reported soft molds in the literature. The excellent agreement between our model and all experimental data enables us to proceed with molding using various thermosetting polymers. Employing one of the robust PDMS molds, we replicate doubly re-entrant surface structures exhibiting two levels of hierarchical overhangs, which exhibit high-fidelity reproduction that successfully repels low-energy fluids without a coating. This work establishes key design principles for soft mold fabrication that prevent interlock damage and enable complex overhang formation, paving the way for large-scale manufacturing of intricate biomimetic surfaces with functional overhanging architectures.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"22 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enabling Soft Molds for Manufacturing Polymeric Surface Structures with Overhangs\",\"authors\":\"Qingyang Sun, Tingyi “Leo” Liu\",\"doi\":\"10.1021/acs.langmuir.5c00307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Surface structures with overhangs are ubiquitous in nature to offer vital functions, yet reproducing them for manufacturing is challenging due to mold interlock during demolding. Soft molds have been proposed to prevent interlock, but they risk stiction-caused collapsing because their intrinsic overhanging features are susceptible to strong intermolecular forces under the microscale. To address this, we model the relationship between overhang geometries and material properties, targeting a balanced relationship between flexibility and structural integrity. We then verify our model using polydimethylsiloxane (PDMS) molds with different moduli and geometries, as well as reported soft molds in the literature. The excellent agreement between our model and all experimental data enables us to proceed with molding using various thermosetting polymers. Employing one of the robust PDMS molds, we replicate doubly re-entrant surface structures exhibiting two levels of hierarchical overhangs, which exhibit high-fidelity reproduction that successfully repels low-energy fluids without a coating. This work establishes key design principles for soft mold fabrication that prevent interlock damage and enable complex overhang formation, paving the way for large-scale manufacturing of intricate biomimetic surfaces with functional overhanging architectures.\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.langmuir.5c00307\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.5c00307","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Enabling Soft Molds for Manufacturing Polymeric Surface Structures with Overhangs
Surface structures with overhangs are ubiquitous in nature to offer vital functions, yet reproducing them for manufacturing is challenging due to mold interlock during demolding. Soft molds have been proposed to prevent interlock, but they risk stiction-caused collapsing because their intrinsic overhanging features are susceptible to strong intermolecular forces under the microscale. To address this, we model the relationship between overhang geometries and material properties, targeting a balanced relationship between flexibility and structural integrity. We then verify our model using polydimethylsiloxane (PDMS) molds with different moduli and geometries, as well as reported soft molds in the literature. The excellent agreement between our model and all experimental data enables us to proceed with molding using various thermosetting polymers. Employing one of the robust PDMS molds, we replicate doubly re-entrant surface structures exhibiting two levels of hierarchical overhangs, which exhibit high-fidelity reproduction that successfully repels low-energy fluids without a coating. This work establishes key design principles for soft mold fabrication that prevent interlock damage and enable complex overhang formation, paving the way for large-scale manufacturing of intricate biomimetic surfaces with functional overhanging architectures.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).