{"title":"表面-界面硼化工程策略稳定富锂锰基氧化物的O/Mn氧化还原化学向高能量密度阴极发展","authors":"Mingzhe Yang, Tongle Chen, gongrui Wang, Xiaofeng Li, Yangyang Liu, Xuanxuan Ren, Ying Zhang, Lu Wu, Li Song, Juncai Sun, Zhong-Shuai Wu","doi":"10.1039/d4ee04857a","DOIUrl":null,"url":null,"abstract":"Lithium-rich manganese-based oxides (LRMOs) are promising high-specific-energy cathode materials for lithium-ion batteries (LIBs) but face issues of voltage decay and poor cyclability rooted in ireversible O/Mn redox. Herein we present a general surface-to-interface boronation engineering strategy of stabilizing LRMO (B-LRMO) with an ion-conductive high-entropy LixTMyBzO2 surface and a gradient-polyanions (BO33-/BO45-) doped interface, exceptionally boosting fast-charging and long-term cyclability. Our B-LRMO achieves a specific capacity of 305 mAh g-1 at 0.1 C, and retains 92% capacity after 200 cycles at 1 C, showing a voltage decay of only 0.788 mV per cycle. Even under extreme fast-charging rate of 5 C, B-LRMO maintains a capacity of 171 mAh g-1, and a 72% capacity retention after 600 cycles, outperforming pristine LRMO (39%) and most of reported LRMO works. Further, we evidence that boronation engineering effectively strengthens the reversibility of O/Mn redox chemistry, leading to improved structural reversibility, enhanced cationic/anionic redox kinetics, reduced metal/oxygen loss, and boosted Li+ storage performance. Our 4.99 Ah pouch cells (B-LRMO||graphite) deliver an energy density of 329 Wh kg-1, and a 97% capacity retention after 30 cycles, demonstrative of enormous applicability. This work provides theoretical and experimental guideline for designing high-capacity and high-voltage LRMO cathodes towards fast-charging long-life LIBs.","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":"116 1","pages":""},"PeriodicalIF":32.4000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Surface-to-Interface Boronation Engineering Strategy Stabilizing the O/Mn Redox Chemistry of Lithium-Rich Manganese based Oxides towards High Energy-Density Cathodes\",\"authors\":\"Mingzhe Yang, Tongle Chen, gongrui Wang, Xiaofeng Li, Yangyang Liu, Xuanxuan Ren, Ying Zhang, Lu Wu, Li Song, Juncai Sun, Zhong-Shuai Wu\",\"doi\":\"10.1039/d4ee04857a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lithium-rich manganese-based oxides (LRMOs) are promising high-specific-energy cathode materials for lithium-ion batteries (LIBs) but face issues of voltage decay and poor cyclability rooted in ireversible O/Mn redox. Herein we present a general surface-to-interface boronation engineering strategy of stabilizing LRMO (B-LRMO) with an ion-conductive high-entropy LixTMyBzO2 surface and a gradient-polyanions (BO33-/BO45-) doped interface, exceptionally boosting fast-charging and long-term cyclability. Our B-LRMO achieves a specific capacity of 305 mAh g-1 at 0.1 C, and retains 92% capacity after 200 cycles at 1 C, showing a voltage decay of only 0.788 mV per cycle. Even under extreme fast-charging rate of 5 C, B-LRMO maintains a capacity of 171 mAh g-1, and a 72% capacity retention after 600 cycles, outperforming pristine LRMO (39%) and most of reported LRMO works. Further, we evidence that boronation engineering effectively strengthens the reversibility of O/Mn redox chemistry, leading to improved structural reversibility, enhanced cationic/anionic redox kinetics, reduced metal/oxygen loss, and boosted Li+ storage performance. Our 4.99 Ah pouch cells (B-LRMO||graphite) deliver an energy density of 329 Wh kg-1, and a 97% capacity retention after 30 cycles, demonstrative of enormous applicability. This work provides theoretical and experimental guideline for designing high-capacity and high-voltage LRMO cathodes towards fast-charging long-life LIBs.\",\"PeriodicalId\":72,\"journal\":{\"name\":\"Energy & Environmental Science\",\"volume\":\"116 1\",\"pages\":\"\"},\"PeriodicalIF\":32.4000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy & Environmental Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d4ee04857a\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ee04857a","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
富锂锰基氧化物(LRMOs)是锂离子电池(LIBs)极具前景的高比能正极材料,但由于O/Mn氧化还原不可逆,面临电压衰减和可循环性差的问题。本文提出了一种表面-界面硼化工程策略,通过离子导电高熵LixTMyBzO2表面和梯度多阴离子(BO33-/BO45-)掺杂界面稳定LRMO (B-LRMO),极大地提高了快速充电和长期可循环性。我们的B-LRMO在0.1 C时达到305 mAh g-1的比容量,在1 C下200次循环后保持92%的容量,每个循环的电压衰减仅为0.788 mV。即使在5℃的极端快速充电率下,B-LRMO也能保持171 mAh g-1的容量,在600次循环后保持72%的容量,优于原始LRMO(39%)和大多数报道的LRMO。此外,我们证明硼化工程有效地增强了O/Mn氧化还原化学的可逆性,从而改善了结构可逆性,增强了阳离子/阴离子氧化还原动力学,减少了金属/氧的损失,提高了Li+的存储性能。我们的4.99 Ah袋状电池(B-LRMO||石墨)提供了329 Wh kg-1的能量密度,30次循环后的容量保持率为97%,证明了巨大的适用性。本研究为设计高容量高压LRMO阴极以实现快充长寿命锂离子电池提供了理论和实验指导。
A Surface-to-Interface Boronation Engineering Strategy Stabilizing the O/Mn Redox Chemistry of Lithium-Rich Manganese based Oxides towards High Energy-Density Cathodes
Lithium-rich manganese-based oxides (LRMOs) are promising high-specific-energy cathode materials for lithium-ion batteries (LIBs) but face issues of voltage decay and poor cyclability rooted in ireversible O/Mn redox. Herein we present a general surface-to-interface boronation engineering strategy of stabilizing LRMO (B-LRMO) with an ion-conductive high-entropy LixTMyBzO2 surface and a gradient-polyanions (BO33-/BO45-) doped interface, exceptionally boosting fast-charging and long-term cyclability. Our B-LRMO achieves a specific capacity of 305 mAh g-1 at 0.1 C, and retains 92% capacity after 200 cycles at 1 C, showing a voltage decay of only 0.788 mV per cycle. Even under extreme fast-charging rate of 5 C, B-LRMO maintains a capacity of 171 mAh g-1, and a 72% capacity retention after 600 cycles, outperforming pristine LRMO (39%) and most of reported LRMO works. Further, we evidence that boronation engineering effectively strengthens the reversibility of O/Mn redox chemistry, leading to improved structural reversibility, enhanced cationic/anionic redox kinetics, reduced metal/oxygen loss, and boosted Li+ storage performance. Our 4.99 Ah pouch cells (B-LRMO||graphite) deliver an energy density of 329 Wh kg-1, and a 97% capacity retention after 30 cycles, demonstrative of enormous applicability. This work provides theoretical and experimental guideline for designing high-capacity and high-voltage LRMO cathodes towards fast-charging long-life LIBs.
期刊介绍:
Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences."
Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).