基于缺陷复合物设计的W-Mg共掺杂na0.5 bi0.5 tio3基陶瓷的大电致伸缩响应

IF 5.8 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Menglu Li , Weili Li , Wenping Cao , Nuo Xu , Wenqi Li , Weidong Fei
{"title":"基于缺陷复合物设计的W-Mg共掺杂na0.5 bi0.5 tio3基陶瓷的大电致伸缩响应","authors":"Menglu Li ,&nbsp;Weili Li ,&nbsp;Wenping Cao ,&nbsp;Nuo Xu ,&nbsp;Wenqi Li ,&nbsp;Weidong Fei","doi":"10.1016/j.jallcom.2025.180802","DOIUrl":null,"url":null,"abstract":"<div><div>Lead-free electrostrictors based on bismuth sodium titanate (Bi<sub>0.5</sub>Na<sub>0.5</sub>TiO<sub>3</sub>, BNT) are critical for sustainable actuator technologies, yet their performance limitations necessitate innovative defect engineering strategies. Here, we report a synergistic B-site donor-acceptor co-doping approach to amplify the electrostrictive response via tailored defect complex. By incorporating W<sup>6 +</sup>-Mg<sup>2+</sup> co-doping, which results in electrostatic field, stress field and electronegativity difference, the domain switching is promoted and the B-site ions are limited. On this basis, we demonstrate the electrostrictive coefficient of 0.0543 m<sup>4</sup>/C<sup>2</sup> at 0.1 Hz and stable around ∼0.037 m<sup>4</sup>/C<sup>2</sup> at 100 Hz. This work establishes a universal co-doping paradigm to optimize lead-free electrostrictors, bridging atomic-scale defect control to macroscopic electromechanical performance.</div></div>","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"1029 ","pages":"Article 180802"},"PeriodicalIF":5.8000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large electrostrictive response in W-Mg co-doped Na0.5Bi0.5TiO3-based ceramics via defect complex designing\",\"authors\":\"Menglu Li ,&nbsp;Weili Li ,&nbsp;Wenping Cao ,&nbsp;Nuo Xu ,&nbsp;Wenqi Li ,&nbsp;Weidong Fei\",\"doi\":\"10.1016/j.jallcom.2025.180802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Lead-free electrostrictors based on bismuth sodium titanate (Bi<sub>0.5</sub>Na<sub>0.5</sub>TiO<sub>3</sub>, BNT) are critical for sustainable actuator technologies, yet their performance limitations necessitate innovative defect engineering strategies. Here, we report a synergistic B-site donor-acceptor co-doping approach to amplify the electrostrictive response via tailored defect complex. By incorporating W<sup>6 +</sup>-Mg<sup>2+</sup> co-doping, which results in electrostatic field, stress field and electronegativity difference, the domain switching is promoted and the B-site ions are limited. On this basis, we demonstrate the electrostrictive coefficient of 0.0543 m<sup>4</sup>/C<sup>2</sup> at 0.1 Hz and stable around ∼0.037 m<sup>4</sup>/C<sup>2</sup> at 100 Hz. This work establishes a universal co-doping paradigm to optimize lead-free electrostrictors, bridging atomic-scale defect control to macroscopic electromechanical performance.</div></div>\",\"PeriodicalId\":344,\"journal\":{\"name\":\"Journal of Alloys and Compounds\",\"volume\":\"1029 \",\"pages\":\"Article 180802\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Alloys and Compounds\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925838825023631\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925838825023631","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

基于钛酸铋钠(Bi0.5Na0.5TiO3, BNT)的无铅电致伸缩器对于可持续执行器技术至关重要,但其性能限制需要创新的缺陷工程策略。在这里,我们报告了一种协同的b位点供体-受体共掺杂方法,通过定制缺陷复合物来放大电致伸缩响应。通过加入W6+-Mg2+共掺杂,产生静电场、应力场和电负性差,促进了畴切换,限制了b位离子。在此基础上,我们证明了电致伸缩系数在0.1 Hz时为0.0543 m4/C2,在100 Hz时稳定在~0.037 m4/C2左右。这项工作建立了一个通用的共掺杂范例来优化无铅电致伸缩器,将原子尺度的缺陷控制与宏观机电性能联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large electrostrictive response in W-Mg co-doped Na0.5Bi0.5TiO3-based ceramics via defect complex designing
Lead-free electrostrictors based on bismuth sodium titanate (Bi0.5Na0.5TiO3, BNT) are critical for sustainable actuator technologies, yet their performance limitations necessitate innovative defect engineering strategies. Here, we report a synergistic B-site donor-acceptor co-doping approach to amplify the electrostrictive response via tailored defect complex. By incorporating W6 +-Mg2+ co-doping, which results in electrostatic field, stress field and electronegativity difference, the domain switching is promoted and the B-site ions are limited. On this basis, we demonstrate the electrostrictive coefficient of 0.0543 m4/C2 at 0.1 Hz and stable around ∼0.037 m4/C2 at 100 Hz. This work establishes a universal co-doping paradigm to optimize lead-free electrostrictors, bridging atomic-scale defect control to macroscopic electromechanical performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Alloys and Compounds
Journal of Alloys and Compounds 工程技术-材料科学:综合
CiteScore
11.10
自引率
14.50%
发文量
5146
审稿时长
67 days
期刊介绍: The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信