可见光下可回收3D N-TiO2/Fe3O4/rGO磁异质结驱动过硫酸氢和H2O2活化增强盐酸四环素的降解:性能和机理

IF 5.8 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
H.Y. Fu, Z.L. Chen, D.Y. Wu, Y.C. Wu, H.B. Guo, P.F. Gao, H. Wang, L. Jin
{"title":"可见光下可回收3D N-TiO2/Fe3O4/rGO磁异质结驱动过硫酸氢和H2O2活化增强盐酸四环素的降解:性能和机理","authors":"H.Y. Fu, Z.L. Chen, D.Y. Wu, Y.C. Wu, H.B. Guo, P.F. Gao, H. Wang, L. Jin","doi":"10.1016/j.jallcom.2025.180832","DOIUrl":null,"url":null,"abstract":"In this work, a simple one-step hydrothermal method was employed to synthesize recyclable magnetic heterojunction N-TiO<sub>2</sub>/Fe<sub>3</sub>O<sub>4</sub>/rGO (NTFG) nanocomposites for the activation of peroxydisulfate (PDS) and H<sub>2</sub>O<sub>2</sub> in the removal of the emerging contaminant tetracycline hydrochloride (TCH). Under visible irradiation, the TCH removal rate in the NTFG/PDS/Vis system was nearly complete at 99.9% (the kinetic rates of 0.1531<!-- --> <!-- -->min<sup>-1</sup>) compared to 98.8% in the NTFG/H<sub>2</sub>O<sub>2</sub>/Vis system (the kinetic rates of 0.1133<!-- --> <!-- -->min<sup>-1</sup>). The excellent catalytic activities of both systems were attributed to the special 3D structure of magnetic heterojunction N-TiO<sub>2</sub>/Fe<sub>3</sub>O<sub>4</sub> (NTF) nanoparticles uniformly dispersed on wrinkled rGO, which promoted interfacial contact between different components. The incorporation of rGO and the formation of a direct Z-scheme heterojunction between the N-TiO<sub>2</sub> and Fe<sub>3</sub>O<sub>4</sub> broadened the visible-light response range and effectively prevented the recombination of photogenerated electrons and holes. Encouragingly, rGO functions as an electron transfer medium to expedite electron transfer, while Fe(III)/Fe(II) cycling on the surface of NTFG further enhances the activation of PDS in the NTFG/PDS/Vis system. For the NTFG/H<sub>2</sub>O<sub>2</sub>/Vis system, rGO not only decomposed H<sub>2</sub>O<sub>2</sub> through an electron transfer mechanism but also effectively promoted Fe(III)/Fe(II) cycling in the Fenton process. Both systems maintained high TCH removal rates after five cycles (the NTFG/PDS/Vis system for 98.2% while the NTFG/H<sub>2</sub>O<sub>2</sub>/Vis system for 91.9%), demonstrating NTFG reusability and magnetic recoverability. Additionally, the NTFG/PDS/Vis system demonstrates a broader pH application range and greater ability to interfere with higher concentrations of humic acid (HA). In both systems, ·OH, <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msubsup is=\"true\"&gt;&lt;mrow is=\"true\"&gt;&lt;mtext is=\"true\"&gt;O&lt;/mtext&gt;&lt;/mrow&gt;&lt;mrow is=\"true\"&gt;&lt;mn is=\"true\"&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow is=\"true\"&gt;&lt;mi mathvariant=\"bold\" is=\"true\"&gt;&amp;#xB7;&lt;/mi&gt;&lt;mo is=\"true\"&gt;&amp;#x2212;&lt;/mo&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"3.009ex\" role=\"img\" style=\"vertical-align: -0.812ex;\" viewbox=\"0 -945.9 1654.9 1295.7\" width=\"3.844ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-4F\"></use></g></g><g is=\"true\" transform=\"translate(778,432)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAINB-22C5\"></use></g><g is=\"true\" transform=\"translate(225,0)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2212\"></use></g></g><g is=\"true\" transform=\"translate(778,-278)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-32\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup is=\"true\"><mrow is=\"true\"><mtext is=\"true\">O</mtext></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow><mrow is=\"true\"><mi is=\"true\" mathvariant=\"bold\">·</mi><mo is=\"true\">−</mo></mrow></msubsup></math></span></span><script type=\"math/mml\"><math><msubsup is=\"true\"><mrow is=\"true\"><mtext is=\"true\">O</mtext></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow><mrow is=\"true\"><mi mathvariant=\"bold\" is=\"true\">·</mi><mo is=\"true\">−</mo></mrow></msubsup></math></script></span>, and h<sup>+</sup> are key active species during TCH degradation, while <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msubsup is=\"true\"&gt;&lt;mrow is=\"true\"&gt;&lt;mtext is=\"true\"&gt;SO&lt;/mtext&gt;&lt;/mrow&gt;&lt;mrow is=\"true\"&gt;&lt;mn is=\"true\"&gt;4&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow is=\"true\"&gt;&lt;mo is=\"true\"&gt;&amp;#x2219;&lt;/mo&gt;&lt;mo is=\"true\"&gt;&amp;#x2212;&lt;/mo&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"3.009ex\" role=\"img\" style=\"vertical-align: -0.812ex;\" viewbox=\"0 -945.9 2339.4 1295.7\" width=\"5.433ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-53\"></use><use x=\"556\" xlink:href=\"#MJMAIN-4F\" y=\"0\"></use></g></g><g is=\"true\" transform=\"translate(1335,432)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2219\"></use></g><g is=\"true\" transform=\"translate(353,0)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2212\"></use></g></g><g is=\"true\" transform=\"translate(1335,-286)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-34\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup is=\"true\"><mrow is=\"true\"><mtext is=\"true\">SO</mtext></mrow><mrow is=\"true\"><mn is=\"true\">4</mn></mrow><mrow is=\"true\"><mo is=\"true\">∙</mo><mo is=\"true\">−</mo></mrow></msubsup></math></span></span><script type=\"math/mml\"><math><msubsup is=\"true\"><mrow is=\"true\"><mtext is=\"true\">SO</mtext></mrow><mrow is=\"true\"><mn is=\"true\">4</mn></mrow><mrow is=\"true\"><mo is=\"true\">∙</mo><mo is=\"true\">−</mo></mrow></msubsup></math></script></span> being particularly significant in the NTFG/PDS/Vis system. Furthermore, possible degradation pathways for TCH in both systems have been proposed, and importantly, the biotoxicity of its intermediates has significantly decreased. The synthesis of NTFG provides new insight into the design of new magnetic heterojunctions with high performance and recyclability.","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"14 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced degradation of tetracycline hydrochloride by recyclable 3D N-TiO2/Fe3O4/rGO magnetic heterojunction driving peroxydisulfate and H2O2 activation under visible light irradiation: Performance and mechanism\",\"authors\":\"H.Y. Fu, Z.L. Chen, D.Y. Wu, Y.C. Wu, H.B. Guo, P.F. Gao, H. Wang, L. Jin\",\"doi\":\"10.1016/j.jallcom.2025.180832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, a simple one-step hydrothermal method was employed to synthesize recyclable magnetic heterojunction N-TiO<sub>2</sub>/Fe<sub>3</sub>O<sub>4</sub>/rGO (NTFG) nanocomposites for the activation of peroxydisulfate (PDS) and H<sub>2</sub>O<sub>2</sub> in the removal of the emerging contaminant tetracycline hydrochloride (TCH). Under visible irradiation, the TCH removal rate in the NTFG/PDS/Vis system was nearly complete at 99.9% (the kinetic rates of 0.1531<!-- --> <!-- -->min<sup>-1</sup>) compared to 98.8% in the NTFG/H<sub>2</sub>O<sub>2</sub>/Vis system (the kinetic rates of 0.1133<!-- --> <!-- -->min<sup>-1</sup>). The excellent catalytic activities of both systems were attributed to the special 3D structure of magnetic heterojunction N-TiO<sub>2</sub>/Fe<sub>3</sub>O<sub>4</sub> (NTF) nanoparticles uniformly dispersed on wrinkled rGO, which promoted interfacial contact between different components. The incorporation of rGO and the formation of a direct Z-scheme heterojunction between the N-TiO<sub>2</sub> and Fe<sub>3</sub>O<sub>4</sub> broadened the visible-light response range and effectively prevented the recombination of photogenerated electrons and holes. Encouragingly, rGO functions as an electron transfer medium to expedite electron transfer, while Fe(III)/Fe(II) cycling on the surface of NTFG further enhances the activation of PDS in the NTFG/PDS/Vis system. For the NTFG/H<sub>2</sub>O<sub>2</sub>/Vis system, rGO not only decomposed H<sub>2</sub>O<sub>2</sub> through an electron transfer mechanism but also effectively promoted Fe(III)/Fe(II) cycling in the Fenton process. Both systems maintained high TCH removal rates after five cycles (the NTFG/PDS/Vis system for 98.2% while the NTFG/H<sub>2</sub>O<sub>2</sub>/Vis system for 91.9%), demonstrating NTFG reusability and magnetic recoverability. Additionally, the NTFG/PDS/Vis system demonstrates a broader pH application range and greater ability to interfere with higher concentrations of humic acid (HA). In both systems, ·OH, <span><span style=\\\"\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;msubsup is=\\\"true\\\"&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;mtext is=\\\"true\\\"&gt;O&lt;/mtext&gt;&lt;/mrow&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;mn is=\\\"true\\\"&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;mi mathvariant=\\\"bold\\\" is=\\\"true\\\"&gt;&amp;#xB7;&lt;/mi&gt;&lt;mo is=\\\"true\\\"&gt;&amp;#x2212;&lt;/mo&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"3.009ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.812ex;\\\" viewbox=\\\"0 -945.9 1654.9 1295.7\\\" width=\\\"3.844ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMAIN-4F\\\"></use></g></g><g is=\\\"true\\\" transform=\\\"translate(778,432)\\\"><g is=\\\"true\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAINB-22C5\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(225,0)\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-2212\\\"></use></g></g><g is=\\\"true\\\" transform=\\\"translate(778,-278)\\\"><g is=\\\"true\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-32\\\"></use></g></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msubsup is=\\\"true\\\"><mrow is=\\\"true\\\"><mtext is=\\\"true\\\">O</mtext></mrow><mrow is=\\\"true\\\"><mn is=\\\"true\\\">2</mn></mrow><mrow is=\\\"true\\\"><mi is=\\\"true\\\" mathvariant=\\\"bold\\\">·</mi><mo is=\\\"true\\\">−</mo></mrow></msubsup></math></span></span><script type=\\\"math/mml\\\"><math><msubsup is=\\\"true\\\"><mrow is=\\\"true\\\"><mtext is=\\\"true\\\">O</mtext></mrow><mrow is=\\\"true\\\"><mn is=\\\"true\\\">2</mn></mrow><mrow is=\\\"true\\\"><mi mathvariant=\\\"bold\\\" is=\\\"true\\\">·</mi><mo is=\\\"true\\\">−</mo></mrow></msubsup></math></script></span>, and h<sup>+</sup> are key active species during TCH degradation, while <span><span style=\\\"\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;msubsup is=\\\"true\\\"&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;mtext is=\\\"true\\\"&gt;SO&lt;/mtext&gt;&lt;/mrow&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;mn is=\\\"true\\\"&gt;4&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;mo is=\\\"true\\\"&gt;&amp;#x2219;&lt;/mo&gt;&lt;mo is=\\\"true\\\"&gt;&amp;#x2212;&lt;/mo&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"3.009ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.812ex;\\\" viewbox=\\\"0 -945.9 2339.4 1295.7\\\" width=\\\"5.433ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMAIN-53\\\"></use><use x=\\\"556\\\" xlink:href=\\\"#MJMAIN-4F\\\" y=\\\"0\\\"></use></g></g><g is=\\\"true\\\" transform=\\\"translate(1335,432)\\\"><g is=\\\"true\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-2219\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(353,0)\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-2212\\\"></use></g></g><g is=\\\"true\\\" transform=\\\"translate(1335,-286)\\\"><g is=\\\"true\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-34\\\"></use></g></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msubsup is=\\\"true\\\"><mrow is=\\\"true\\\"><mtext is=\\\"true\\\">SO</mtext></mrow><mrow is=\\\"true\\\"><mn is=\\\"true\\\">4</mn></mrow><mrow is=\\\"true\\\"><mo is=\\\"true\\\">∙</mo><mo is=\\\"true\\\">−</mo></mrow></msubsup></math></span></span><script type=\\\"math/mml\\\"><math><msubsup is=\\\"true\\\"><mrow is=\\\"true\\\"><mtext is=\\\"true\\\">SO</mtext></mrow><mrow is=\\\"true\\\"><mn is=\\\"true\\\">4</mn></mrow><mrow is=\\\"true\\\"><mo is=\\\"true\\\">∙</mo><mo is=\\\"true\\\">−</mo></mrow></msubsup></math></script></span> being particularly significant in the NTFG/PDS/Vis system. Furthermore, possible degradation pathways for TCH in both systems have been proposed, and importantly, the biotoxicity of its intermediates has significantly decreased. The synthesis of NTFG provides new insight into the design of new magnetic heterojunctions with high performance and recyclability.\",\"PeriodicalId\":344,\"journal\":{\"name\":\"Journal of Alloys and Compounds\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Alloys and Compounds\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jallcom.2025.180832\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jallcom.2025.180832","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文采用简单的一步水热法合成了可回收的磁性异质结N-TiO2/Fe3O4/rGO (NTFG)纳米复合材料,用于活化过硫酸氢盐(PDS)和H2O2去除新出现的污染物盐酸四环素(TCH)。在可见光照射下,NTFG/PDS/Vis体系对TCH的去除率为99.9%(动力学速率为0.1531 min-1),而NTFG/H2O2/Vis体系对TCH的去除率为98.8%(动力学速率为0.1133 min-1)。两种体系的优异催化活性归因于磁性异质结N-TiO2/Fe3O4 (NTF)纳米颗粒均匀分散在皱褶状氧化石墨烯上的特殊三维结构,促进了不同组分之间的界面接触。rGO的掺入和N-TiO2与Fe3O4之间直接Z-scheme异质结的形成拓宽了可见光响应范围,有效地阻止了光生电子与空穴的复合。令人鼓舞的是,还原氧化石墨烯作为电子传递介质加速电子传递,而Fe(III)/Fe(II)在NTFG表面的循环进一步增强了NTFG/PDS/Vis体系中PDS的活化。在NTFG/H2O2/Vis体系中,rGO不仅通过电子传递机制分解H2O2,还能有效促进Fenton过程中Fe(III)/Fe(II)的循环。经过5次循环后,两种体系都保持了较高的TCH去除率(NTFG/PDS/Vis体系去除率为98.2%,NTFG/H2O2/Vis体系去除率为91.9%),证明了NTFG的可重复使用性和磁性可恢复性。此外,NTFG/PDS/Vis系统具有更广泛的pH适用范围,并且具有更强的干扰高浓度腐植酸(HA)的能力。在这两个体系中,·OH、O2·−O2·−和h+是TCH降解过程中的关键活性物质,而SO4∙−SO4∙−在NTFG/PDS/Vis体系中尤为显著。此外,还提出了TCH在两种体系中的可能降解途径,重要的是,其中间体的生物毒性显著降低。NTFG的合成为高性能、可回收的新型磁异质结的设计提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhanced degradation of tetracycline hydrochloride by recyclable 3D N-TiO2/Fe3O4/rGO magnetic heterojunction driving peroxydisulfate and H2O2 activation under visible light irradiation: Performance and mechanism

Enhanced degradation of tetracycline hydrochloride by recyclable 3D N-TiO2/Fe3O4/rGO magnetic heterojunction driving peroxydisulfate and H2O2 activation under visible light irradiation: Performance and mechanism
In this work, a simple one-step hydrothermal method was employed to synthesize recyclable magnetic heterojunction N-TiO2/Fe3O4/rGO (NTFG) nanocomposites for the activation of peroxydisulfate (PDS) and H2O2 in the removal of the emerging contaminant tetracycline hydrochloride (TCH). Under visible irradiation, the TCH removal rate in the NTFG/PDS/Vis system was nearly complete at 99.9% (the kinetic rates of 0.1531 min-1) compared to 98.8% in the NTFG/H2O2/Vis system (the kinetic rates of 0.1133 min-1). The excellent catalytic activities of both systems were attributed to the special 3D structure of magnetic heterojunction N-TiO2/Fe3O4 (NTF) nanoparticles uniformly dispersed on wrinkled rGO, which promoted interfacial contact between different components. The incorporation of rGO and the formation of a direct Z-scheme heterojunction between the N-TiO2 and Fe3O4 broadened the visible-light response range and effectively prevented the recombination of photogenerated electrons and holes. Encouragingly, rGO functions as an electron transfer medium to expedite electron transfer, while Fe(III)/Fe(II) cycling on the surface of NTFG further enhances the activation of PDS in the NTFG/PDS/Vis system. For the NTFG/H2O2/Vis system, rGO not only decomposed H2O2 through an electron transfer mechanism but also effectively promoted Fe(III)/Fe(II) cycling in the Fenton process. Both systems maintained high TCH removal rates after five cycles (the NTFG/PDS/Vis system for 98.2% while the NTFG/H2O2/Vis system for 91.9%), demonstrating NTFG reusability and magnetic recoverability. Additionally, the NTFG/PDS/Vis system demonstrates a broader pH application range and greater ability to interfere with higher concentrations of humic acid (HA). In both systems, ·OH, O2·, and h+ are key active species during TCH degradation, while SO4 being particularly significant in the NTFG/PDS/Vis system. Furthermore, possible degradation pathways for TCH in both systems have been proposed, and importantly, the biotoxicity of its intermediates has significantly decreased. The synthesis of NTFG provides new insight into the design of new magnetic heterojunctions with high performance and recyclability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Alloys and Compounds
Journal of Alloys and Compounds 工程技术-材料科学:综合
CiteScore
11.10
自引率
14.50%
发文量
5146
审稿时长
67 days
期刊介绍: The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信