利用富氮掺杂纳米多孔碳探索高性能镁硫袋电池

IF 15.8 1区 材料科学 Q1 METALLURGY & METALLURGICAL ENGINEERING
Yingying Yao, Yinghui Li, Zhao Li, Hao Xu, Yang Zhan, Fengzhan Sun, Ya Yang, Richard M. Laine, Liang Fu, Jianxin Zou
{"title":"利用富氮掺杂纳米多孔碳探索高性能镁硫袋电池","authors":"Yingying Yao, Yinghui Li, Zhao Li, Hao Xu, Yang Zhan, Fengzhan Sun, Ya Yang, Richard M. Laine, Liang Fu, Jianxin Zou","doi":"10.1016/j.jma.2025.03.028","DOIUrl":null,"url":null,"abstract":"Magnesium-sulfur batteries (MSBs) are promising due to Mg's lower propensity to form dendrites, its natural abundance, and high volumetric energy densities for large-scale energy storage. Nonetheless, Mg<sup>2+</sup> ions have poor diffusion kinetics and the magnesium polysulfide (MgPS) shuttle effect present significant challenges for MSBs. Herein, a Mg-S pouch cell is designed using rich N-doped porous carbon (ZIF8-NC) and a Cu current collector. This architecture provides numerous benefits: i) ZIF8-NC offers a conductive skeleton that significantly enhances electron and Mg<sup>2+</sup> ion conduction, ii) zeolite imidazolate frameworks (ZIF-8) derived N rich sites demonstrate superior MgPS anchoring capability, iii) the Cu collector not only accelerates conversion of anchored MgPS to MgS, but also participates in the electrode reaction and iv) the material is easy to synthesize on a large scale, facilitating its potential for practical applications. Mg-S/ZIF8-NC coin cells maintain ∼310 mAh·g<sup>-1</sup> after 1000 cycles even at 1C. Furthermore, Mg-S/ZIF8-NC pouch cells achieve high cathodic energy densities of ∼120 Wh·kg<sup>-1</sup> and ∼330 mAh·g<sup>-1</sup> after 300 cycles at 1C, outperforming the state-of-the-art results in the literature. Soft X-ray absorption spectroscopy (sXAS) revealed that the initial catalytic reaction of Cu follows Cu<sup>0</sup>↔Cu<sub>2</sub>S, and later Cu<sub>2</sub>S↔Cu<sub>x</sub>S. Theoretical calculations and experimental results reveal that pyridine nitrogen acts as catalytic site for polysulfide adsorption. Therefore, this work not only provides a facile method to prepare high-performance Mg-S pouch cells, but also proposes mechanisms whereby N active sites and Cu catalytic reactions promote all aspects of performance.","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"12 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring high-performance magnesium-sulfur pouch cells using nitrogen-rich doped nano porous carbon\",\"authors\":\"Yingying Yao, Yinghui Li, Zhao Li, Hao Xu, Yang Zhan, Fengzhan Sun, Ya Yang, Richard M. Laine, Liang Fu, Jianxin Zou\",\"doi\":\"10.1016/j.jma.2025.03.028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnesium-sulfur batteries (MSBs) are promising due to Mg's lower propensity to form dendrites, its natural abundance, and high volumetric energy densities for large-scale energy storage. Nonetheless, Mg<sup>2+</sup> ions have poor diffusion kinetics and the magnesium polysulfide (MgPS) shuttle effect present significant challenges for MSBs. Herein, a Mg-S pouch cell is designed using rich N-doped porous carbon (ZIF8-NC) and a Cu current collector. This architecture provides numerous benefits: i) ZIF8-NC offers a conductive skeleton that significantly enhances electron and Mg<sup>2+</sup> ion conduction, ii) zeolite imidazolate frameworks (ZIF-8) derived N rich sites demonstrate superior MgPS anchoring capability, iii) the Cu collector not only accelerates conversion of anchored MgPS to MgS, but also participates in the electrode reaction and iv) the material is easy to synthesize on a large scale, facilitating its potential for practical applications. Mg-S/ZIF8-NC coin cells maintain ∼310 mAh·g<sup>-1</sup> after 1000 cycles even at 1C. Furthermore, Mg-S/ZIF8-NC pouch cells achieve high cathodic energy densities of ∼120 Wh·kg<sup>-1</sup> and ∼330 mAh·g<sup>-1</sup> after 300 cycles at 1C, outperforming the state-of-the-art results in the literature. Soft X-ray absorption spectroscopy (sXAS) revealed that the initial catalytic reaction of Cu follows Cu<sup>0</sup>↔Cu<sub>2</sub>S, and later Cu<sub>2</sub>S↔Cu<sub>x</sub>S. Theoretical calculations and experimental results reveal that pyridine nitrogen acts as catalytic site for polysulfide adsorption. Therefore, this work not only provides a facile method to prepare high-performance Mg-S pouch cells, but also proposes mechanisms whereby N active sites and Cu catalytic reactions promote all aspects of performance.\",\"PeriodicalId\":16214,\"journal\":{\"name\":\"Journal of Magnesium and Alloys\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Magnesium and Alloys\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jma.2025.03.028\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnesium and Alloys","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jma.2025.03.028","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

镁硫电池(msb)具有较低的枝晶形成倾向、天然丰度和高容量能量密度,适合大规模储能。然而,Mg2+离子的扩散动力学较差,多硫化镁(mgp)的穿梭效应对MSBs提出了重大挑战。本文采用富n掺杂多孔碳(ZIF8-NC)和Cu集流器设计了Mg-S袋状电池。这种架构提供了许多好处:i) ZIF8-NC提供了一个导电骨架,显著增强了电子和Mg2+离子的传导;ii)沸石咪唑盐框架(ZIF-8)衍生的富N位点显示出优越的mgp锚定能力;iii) Cu捕收剂不仅加速了锚定mgp向MgS的转化,而且还参与了电极反应;iv)该材料易于大规模合成,促进了其实际应用潜力。Mg-S/ZIF8-NC纽扣电池即使在1C下也能在1000次循环后保持~ 310 mAh·g-1。此外,Mg-S/ZIF8-NC袋状电池在1C下进行300次循环后,阴极能量密度高达~ 120 Wh·kg-1和~ 330 mAh·g-1,优于文献中最先进的结果。软x射线吸收光谱(sXAS)揭示了Cu的初始催化反应遵循Cu0↔Cu2S,而后Cu2S↔CuxS。理论计算和实验结果表明,吡啶氮是多硫化物吸附的催化位点。因此,这项工作不仅提供了一种制备高性能Mg-S袋状电池的简便方法,而且还提出了N活性位点和Cu催化反应促进各方面性能的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Exploring high-performance magnesium-sulfur pouch cells using nitrogen-rich doped nano porous carbon

Exploring high-performance magnesium-sulfur pouch cells using nitrogen-rich doped nano porous carbon
Magnesium-sulfur batteries (MSBs) are promising due to Mg's lower propensity to form dendrites, its natural abundance, and high volumetric energy densities for large-scale energy storage. Nonetheless, Mg2+ ions have poor diffusion kinetics and the magnesium polysulfide (MgPS) shuttle effect present significant challenges for MSBs. Herein, a Mg-S pouch cell is designed using rich N-doped porous carbon (ZIF8-NC) and a Cu current collector. This architecture provides numerous benefits: i) ZIF8-NC offers a conductive skeleton that significantly enhances electron and Mg2+ ion conduction, ii) zeolite imidazolate frameworks (ZIF-8) derived N rich sites demonstrate superior MgPS anchoring capability, iii) the Cu collector not only accelerates conversion of anchored MgPS to MgS, but also participates in the electrode reaction and iv) the material is easy to synthesize on a large scale, facilitating its potential for practical applications. Mg-S/ZIF8-NC coin cells maintain ∼310 mAh·g-1 after 1000 cycles even at 1C. Furthermore, Mg-S/ZIF8-NC pouch cells achieve high cathodic energy densities of ∼120 Wh·kg-1 and ∼330 mAh·g-1 after 300 cycles at 1C, outperforming the state-of-the-art results in the literature. Soft X-ray absorption spectroscopy (sXAS) revealed that the initial catalytic reaction of Cu follows Cu0↔Cu2S, and later Cu2S↔CuxS. Theoretical calculations and experimental results reveal that pyridine nitrogen acts as catalytic site for polysulfide adsorption. Therefore, this work not only provides a facile method to prepare high-performance Mg-S pouch cells, but also proposes mechanisms whereby N active sites and Cu catalytic reactions promote all aspects of performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Magnesium and Alloys
Journal of Magnesium and Alloys Engineering-Mechanics of Materials
CiteScore
20.20
自引率
14.80%
发文量
52
审稿时长
59 days
期刊介绍: The Journal of Magnesium and Alloys serves as a global platform for both theoretical and experimental studies in magnesium science and engineering. It welcomes submissions investigating various scientific and engineering factors impacting the metallurgy, processing, microstructure, properties, and applications of magnesium and alloys. The journal covers all aspects of magnesium and alloy research, including raw materials, alloy casting, extrusion and deformation, corrosion and surface treatment, joining and machining, simulation and modeling, microstructure evolution and mechanical properties, new alloy development, magnesium-based composites, bio-materials and energy materials, applications, and recycling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信